The Japan Times - Brain stimulation can help injured people walk: study

EUR -
AED 4.356256
AFN 77.102519
ALL 96.729833
AMD 453.280378
ANG 2.123363
AOA 1087.730931
ARS 1716.407515
AUD 1.703027
AWG 2.138096
AZN 2.01145
BAM 1.957011
BBD 2.40819
BDT 146.110377
BGN 1.992042
BHD 0.449378
BIF 3542.291098
BMD 1.186184
BND 1.514237
BOB 8.262111
BRL 6.235172
BSD 1.19564
BTN 109.797916
BWP 15.644677
BYN 3.405506
BYR 23249.200887
BZD 2.404687
CAD 1.615618
CDF 2686.705937
CHF 0.916565
CLF 0.026028
CLP 1027.744898
CNY 8.246052
CNH 8.251497
COP 4352.992561
CRC 592.066225
CUC 1.186184
CUP 31.433869
CVE 110.333247
CZK 24.330941
DJF 212.911697
DKK 7.467917
DOP 75.276563
DZD 154.566608
EGP 55.909475
ERN 17.792756
ETB 185.73929
FJD 2.61512
FKP 0.866428
GBP 0.866359
GEL 3.196822
GGP 0.866428
GHS 13.098102
GIP 0.866428
GMD 86.591171
GNF 10491.489553
GTQ 9.170673
GYD 250.144728
HKD 9.263715
HNL 31.558521
HRK 7.534519
HTG 156.476789
HUF 381.053191
IDR 19896.452606
ILS 3.665789
IMP 0.866428
INR 108.766523
IQD 1566.368884
IRR 49967.989338
ISK 145.081737
JEP 0.866428
JMD 187.365896
JOD 0.841039
JPY 183.859615
KES 154.365483
KGS 103.731752
KHR 4807.973992
KMF 492.265869
KPW 1067.565349
KRW 1720.932795
KWD 0.364064
KYD 0.996416
KZT 601.341962
LAK 25730.915962
LBP 107070.628969
LKR 369.758716
LRD 215.513307
LSL 18.984543
LTL 3.502492
LVL 0.71751
LYD 7.502641
MAD 10.845709
MDL 20.110439
MGA 5343.305123
MKD 61.678151
MMK 2491.375458
MNT 4230.383521
MOP 9.614947
MRU 47.706509
MUR 53.888177
MVR 18.338709
MWK 2073.282437
MXN 20.709403
MYR 4.675926
MZN 75.630943
NAD 18.984543
NGN 1644.620269
NIO 43.997215
NOK 11.444004
NPR 175.676666
NZD 1.96843
OMR 0.458323
PAB 1.19564
PEN 3.997573
PGK 5.118166
PHP 69.884035
PKR 334.513515
PLN 4.213639
PYG 8008.953971
QAR 4.359296
RON 5.100467
RSD 117.472663
RUB 90.549444
RWF 1744.479055
SAR 4.450194
SBD 9.550693
SCR 17.214648
SDG 713.492182
SEK 10.570575
SGD 1.508244
SHP 0.889945
SLE 28.853899
SLL 24873.67862
SOS 683.322672
SRD 45.134883
STD 24551.608082
STN 24.515164
SVC 10.461471
SYP 13118.687676
SZL 18.978739
THB 37.242691
TJS 11.161404
TMT 4.151643
TND 3.435325
TOP 2.856045
TRY 51.596109
TTD 8.118021
TWD 37.48105
TZS 3078.804407
UAH 51.245698
UGX 4274.644098
USD 1.186184
UYU 46.3987
UZS 14617.04143
VES 410.350069
VND 30769.605664
VUV 140.90849
WST 3.215484
XAF 656.362996
XAG 0.014208
XAU 0.000248
XCD 3.205721
XCG 2.154833
XDR 0.816305
XOF 656.362996
XPF 119.331742
YER 282.697194
ZAR 19.196652
ZMK 10677.081704
ZMW 23.464514
ZWL 381.950673
  • SCS

    0.0200

    16.14

    +0.12%

  • BCC

    0.5100

    80.81

    +0.63%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • BTI

    0.4600

    60.68

    +0.76%

  • CMSC

    0.0500

    23.76

    +0.21%

  • BP

    -0.1600

    37.88

    -0.42%

  • AZN

    0.1800

    92.77

    +0.19%

  • RIO

    -4.1000

    91.03

    -4.5%

  • BCE

    0.3700

    25.86

    +1.43%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • NGG

    0.2000

    85.27

    +0.23%

  • GSK

    0.9400

    51.6

    +1.82%

  • VOD

    -0.0600

    14.65

    -0.41%

  • RELX

    -0.3700

    35.8

    -1.03%

  • JRI

    0.1400

    13.08

    +1.07%

  • RYCEF

    -0.4300

    16

    -2.69%

Brain stimulation can help injured people walk: study
Brain stimulation can help injured people walk: study / Photo: Fabrice COFFRINI - AFP/File

Brain stimulation can help injured people walk: study

Scientists said Monday that electrically stimulating a particular region in the brain could help people with injured spinal cords walk more easily, with one patient describing how the technique allowed him to conquer his fear of stairs.

Text size:

The new technique is intended for people with spinal cord injuries where the connection between their brain and spinal cord has not been totally severed, and who still have some movement in their legs.

Wolfgang Jaeger, one of two patients who took part in an early trial, said that it immediately made a "big difference" to his mobility.

"Now when I see a staircase with just a few steps, I know I can handle it on my own," the 54-year-old said in a video released alongside a new study in the journal Nature Medicine.

The research was conducted by a Swiss team that has pioneered several recent advances, including using electrical stimulation of the spinal cord to let several paralysed patients walk again.

This time around, the researchers wanted to figure out which region of the brain was most responsible for people recovering from spinal cord injuries.

- 'I feel the urge to walk' -

Using 3D imaging techniques to map out the brain activity of mice with these injuries, the team created what they called a "brain-wide atlas".

They were surprised to find that the brain region they were looking for was in the lateral hypothalamus, which is otherwise known as a regulator for arousal, feeding and motivation.

A particular group of neurons in this region "appears to be involved in the recovery of walking after spinal cord injury," neuroscientist Gregoire Courtine at Switzerland's Ecole Polytechnique Federale de Lausanne told AFP.

Next, the team sought to amplify the signal from these neurons using a procedure called deep brain stimulation, which is commonly used to treat movement problems in people with Parkinson's disease.

It involves a surgeon implanting electrodes in the brain region, which are connected to a device implanted in the patient's chest. When switched on, the device sends electrical pulses up to the brain.

First, the team tested their theory on rats and mice, finding that it "immediately" improved walking, the study said.

The first human participant of the 2022 Swiss trial was a woman who, like Jaeger, has an incomplete spinal cord injury.

Neurosurgeon Jocelyne Bloch told AFP that when the women's device was turned on for the first time, she said: "I feel my legs."

When they turned up the electrical current, the women said, "I feel the urge to walk," according to Bloch.

The patients could turn on their device whenever they needed, and also went through months of rehab and strength training.

The woman's goal was to walk independently without a walker, while Jaeger's was to climb stairs by himself.

"Both of them reached their goal," Bloch said.

- 'No problem' -

Jaeger, who is from the Swiss municipality of Kappel, spoke about facing eight steps down to the sea during a holiday last year.

With the device turned on, "walking up and down the stairs was no problem," he said.

"It's a great feeling when you don't have to rely on others all the time."

Over time, he "became faster and could walk longer" even when the device was switched off, he added.

More research is still needed -- and this technique will not be effective for all patients, Courtine emphasised.

Because it depends on boosting the brain's signal to the spinal cord, it depends how much signal was getting through in the first place.

And while deep brain stimulation is now fairly common, some people are not so "comfortable with someone operating on their brain," Courtine added.

The researchers believe that in the future, the best option for recovering from these kinds of injuries could be stimulating both their spinal cord and lateral hypothalamus.

H.Takahashi--JT