The Japan Times - Nobel scientist uncovered tiny genetic switches with big potential

EUR -
AED 4.358686
AFN 77.145243
ALL 96.636973
AMD 452.900547
ANG 2.124546
AOA 1088.336435
ARS 1725.464149
AUD 1.707235
AWG 2.139287
AZN 2.013799
BAM 1.955354
BBD 2.406161
BDT 145.986713
BGN 1.993151
BHD 0.450405
BIF 3539.352612
BMD 1.186844
BND 1.512981
BOB 8.255118
BRL 6.245411
BSD 1.194492
BTN 109.70591
BWP 15.629658
BYN 3.402638
BYR 23262.149846
BZD 2.402662
CAD 1.618648
CDF 2688.202567
CHF 0.917039
CLF 0.026071
CLP 1029.433075
CNY 8.250645
CNH 8.248248
COP 4355.422163
CRC 591.57508
CUC 1.186844
CUP 31.451376
CVE 110.240328
CZK 24.360569
DJF 212.73239
DKK 7.467503
DOP 75.214117
DZD 154.438388
EGP 55.90725
ERN 17.802666
ETB 185.585211
FJD 2.616576
FKP 0.866911
GBP 0.867168
GEL 3.19856
GGP 0.866911
GHS 13.087071
GIP 0.866911
GMD 86.639448
GNF 10482.786402
GTQ 9.162988
GYD 249.935117
HKD 9.268638
HNL 31.532341
HRK 7.53326
HTG 156.346985
HUF 381.685626
IDR 19929.431485
ILS 3.66783
IMP 0.866911
INR 109.139241
IQD 1565.043144
IRR 49995.819691
ISK 144.996819
JEP 0.866911
JMD 187.210468
JOD 0.841466
JPY 184.045735
KES 154.23072
KGS 103.78971
KHR 4803.985566
KMF 492.540492
KPW 1068.159944
KRW 1728.763412
KWD 0.364266
KYD 0.995565
KZT 600.827939
LAK 25709.354463
LBP 106980.457386
LKR 369.447316
LRD 215.332715
LSL 18.968635
LTL 3.504443
LVL 0.71791
LYD 7.496322
MAD 10.836529
MDL 20.093588
MGA 5338.805156
MKD 61.625948
MMK 2492.763063
MNT 4232.739691
MOP 9.606809
MRU 47.666934
MUR 53.894966
MVR 18.34888
MWK 2071.536383
MXN 20.742444
MYR 4.678488
MZN 75.673253
NAD 18.968315
NGN 1657.879276
NIO 43.960717
NOK 11.448953
NPR 175.530934
NZD 1.971295
OMR 0.457938
PAB 1.194628
PEN 3.994189
PGK 5.113942
PHP 69.865996
PKR 334.192385
PLN 4.215357
PYG 8002.209077
QAR 4.355625
RON 5.095363
RSD 117.373237
RUB 90.539571
RWF 1743.046616
SAR 4.451618
SBD 9.556012
SCR 17.136845
SDG 713.89198
SEK 10.574663
SGD 1.508331
SHP 0.890441
SLE 28.870014
SLL 24887.532355
SOS 682.755826
SRD 45.160023
STD 24565.282435
STN 24.494931
SVC 10.452529
SYP 13125.994308
SZL 18.96052
THB 37.452649
TJS 11.152051
TMT 4.153955
TND 3.432432
TOP 2.857636
TRY 51.635564
TTD 8.111185
TWD 37.507823
TZS 3076.276554
UAH 51.202541
UGX 4271.044125
USD 1.186844
UYU 46.360015
UZS 14604.669895
VES 410.578618
VND 30777.24846
VUV 140.986971
WST 3.217275
XAF 655.824039
XAG 0.014548
XAU 0.000252
XCD 3.207506
XCG 2.153009
XDR 0.815617
XOF 655.810227
XPF 119.331742
YER 282.854672
ZAR 19.202781
ZMK 10683.018904
ZMW 23.444753
ZWL 382.163406
  • SCS

    0.0200

    16.14

    +0.12%

  • BCC

    0.5100

    80.81

    +0.63%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • AZN

    0.1800

    92.77

    +0.19%

  • BCE

    0.3700

    25.86

    +1.43%

  • JRI

    0.1400

    13.08

    +1.07%

  • BTI

    0.4600

    60.68

    +0.76%

  • CMSC

    0.0500

    23.76

    +0.21%

  • RIO

    -4.1000

    91.03

    -4.5%

  • GSK

    0.9400

    51.6

    +1.82%

  • RELX

    -0.3700

    35.8

    -1.03%

  • NGG

    0.2000

    85.27

    +0.23%

  • VOD

    -0.0600

    14.65

    -0.41%

  • BP

    -0.1600

    37.88

    -0.42%

  • RYCEF

    -0.4300

    16

    -2.69%

Nobel scientist uncovered tiny genetic switches with big potential
Nobel scientist uncovered tiny genetic switches with big potential / Photo: LAUREN OWENS LAMBERT - AFP

Nobel scientist uncovered tiny genetic switches with big potential

Harvard geneticist Gary Ruvkun vividly remembers the late-night phone call with his longtime friend and now 2024 Nobel Prize in Medicine co-laureate Victor Ambros, when they made their groundbreaking discovery of genetic switches that exist across the tree of life.

Text size:

It was the early 1990s. The pair, who had met a decade earlier and bonded over their fascination with an obscure species of roundworm, were exchanging datapoints at 11 pm -- one of the rare moments Ambros could steal away from tending to his newborn baby.

"It just fit together like puzzle pieces," Ruvkun told AFP in an interview from his home in a Boston suburb, shortly after learning of the award on Monday. "It was a eureka moment."

What they had uncovered was microRNA: tiny genetic molecules that act as key regulators of development in animals and plants, and hold the promise of breakthroughs in treating a wide range of diseases in the years ahead.

Although these molecules are only 22 "letters" long -- compared to the thousands of lines of code in regular protein-coding genes -- their small size belies their critical role as molecular gatekeepers.

"They turn off target genes," Ruvkun explained.

"It's a little bit like how astronomy starts with looking at the visible spectrum, and then people thought 'If we look with X rays, we can see much higher energy events,'" he added.

"We were looking at genetics at much smaller scales than it had been looked at before."

- Dismissed at first -

Their discovery had its roots in early investigations into C. elegans, a one-millimeter-long roundworm.

Ambros and Ruvkun were intrigued by the interplay between two genes that seemed to disrupt the worm's normal development -- causing them either to stay in a juvenile state or acquire adult features prematurely.

The genetic information contained in all our cells flows from DNA to messenger RNA (mRNA) through a process called transcription, and then on to the cellular machinery where it provides instructions on which proteins to create.

It's through this process, understood since the mid-20th century, that cells become specialized and carry out different functions.

But Ambros and Ruvkun, who began their work in the same lab before moving to different institutions, discovered a fundamentally new pathway for regulating gene activity through microRNAs, which control gene expression after transcription.

They published their findings in back-to-back papers in Cell in 1993, but at first, the discovery was dismissed as an esoteric detail, likely irrelevant to mammals.

"We were considered an oddity in the world of developmental biology," Ruvkun recalled. Even he had little idea their work would one day be celebrated by the wider scientific community.

That all changed in 2000 when Ruvkun's lab discovered another microRNA that was present throughout the tree of life -- from roundworms to mollusks, chickens, and humans.

- 'Celebrating like crazy' -

At the time, the human genome was still being mapped, but the portion that was complete was available to researchers.

"I think it was probably one-third done, and I could already see (the new microRNA) in that one-third of the human genome," said Ruvkun. "That was a surprise!"

Since then, the microRNA field has exploded, with more than 170,000 citations currently listed in biomedical literature.

More than 1,000 microRNAs have been identified in human DNA, and some are already being used to better understand tumor types and develop treatments for people with chronic lymphocytic leukemia.

Trials are also underway to develop microRNAs as treatments for heart disease.

On the morning of their Nobel win, the two old friends "Facetimed and high-fived," Ruvkun said. "It's magnificent, and we're going to be celebrating like crazy."

T.Shimizu--JT