The Japan Times - 'Big sponge': new CO2 tech taps oceans to tackle global warming

EUR -
AED 4.353382
AFN 77.05154
ALL 96.6659
AMD 452.980789
ANG 2.12196
AOA 1087.011649
ARS 1715.27374
AUD 1.700138
AWG 2.136683
AZN 2.016962
BAM 1.955717
BBD 2.406598
BDT 146.013807
BGN 1.990725
BHD 0.449081
BIF 3539.949869
BMD 1.1854
BND 1.513236
BOB 8.25665
BRL 6.231058
BSD 1.194849
BTN 109.725346
BWP 15.634337
BYN 3.403256
BYR 23233.834642
BZD 2.403098
CAD 1.611918
CDF 2684.930667
CHF 0.911329
CLF 0.026011
CLP 1027.065402
CNY 8.240602
CNH 8.248669
COP 4350.11551
CRC 591.674907
CUC 1.1854
CUP 31.413093
CVE 110.260324
CZK 24.336607
DJF 212.770976
DKK 7.470147
DOP 75.22681
DZD 154.464449
EGP 55.903629
ERN 17.780996
ETB 185.616528
FJD 2.613392
FKP 0.865856
GBP 0.861451
GEL 3.194656
GGP 0.865856
GHS 13.089445
GIP 0.865856
GMD 86.534664
GNF 10484.555345
GTQ 9.164611
GYD 249.979398
HKD 9.259098
HNL 31.537662
HRK 7.536653
HTG 156.373368
HUF 380.868342
IDR 19883.302315
ILS 3.66336
IMP 0.865856
INR 108.694634
IQD 1565.333613
IRR 49934.963672
ISK 144.986215
JEP 0.865856
JMD 187.242059
JOD 0.840447
JPY 183.458423
KES 154.263458
KGS 103.663312
KHR 4804.796226
KMF 491.940791
KPW 1066.859756
KRW 1719.772596
KWD 0.363823
KYD 0.995758
KZT 600.944514
LAK 25713.909461
LBP 106999.862086
LKR 369.514329
LRD 215.370866
LSL 18.971995
LTL 3.500177
LVL 0.717036
LYD 7.497682
MAD 10.83854
MDL 20.097148
MGA 5339.773538
MKD 61.637386
MMK 2489.728817
MNT 4227.587506
MOP 9.608592
MRU 47.674978
MUR 53.852825
MVR 18.326127
MWK 2071.912129
MXN 20.704153
MYR 4.672852
MZN 75.580739
NAD 18.971995
NGN 1643.533583
NIO 43.968135
NOK 11.414558
NPR 175.560554
NZD 1.959292
OMR 0.458021
PAB 1.194849
PEN 3.994931
PGK 5.114783
PHP 69.837845
PKR 334.292423
PLN 4.212869
PYG 8003.660561
QAR 4.356415
RON 5.097103
RSD 117.395021
RUB 90.53616
RWF 1743.326065
SAR 4.447253
SBD 9.54438
SCR 17.20327
SDG 713.019239
SEK 10.549127
SGD 1.506168
SHP 0.889357
SLE 28.834855
SLL 24857.238699
SOS 682.871039
SRD 45.10505
STD 24535.381029
STN 24.498961
SVC 10.454557
SYP 13110.017057
SZL 18.966196
THB 37.222281
TJS 11.154027
TMT 4.148899
TND 3.433054
TOP 2.854158
TRY 51.401896
TTD 8.112656
TWD 37.456216
TZS 3076.769513
UAH 51.211828
UGX 4271.81883
USD 1.1854
UYU 46.368034
UZS 14607.380494
VES 410.078852
VND 30749.268909
VUV 140.815358
WST 3.213359
XAF 655.929182
XAG 0.014004
XAU 0.000244
XCD 3.203602
XCG 2.153409
XDR 0.815765
XOF 655.929182
XPF 119.331742
YER 282.51038
ZAR 19.104199
ZMK 10670.019447
ZMW 23.449006
ZWL 381.698228
  • RBGPF

    1.3800

    83.78

    +1.65%

  • SCS

    0.0200

    16.14

    +0.12%

  • VOD

    -0.0600

    14.65

    -0.41%

  • BTI

    0.4600

    60.68

    +0.76%

  • BP

    -0.1600

    37.88

    -0.42%

  • RIO

    -4.1000

    91.03

    -4.5%

  • CMSC

    0.0500

    23.76

    +0.21%

  • RELX

    -0.3700

    35.8

    -1.03%

  • GSK

    0.9400

    51.6

    +1.82%

  • RYCEF

    -0.4300

    16

    -2.69%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • BCE

    0.3700

    25.86

    +1.43%

  • NGG

    0.2000

    85.27

    +0.23%

  • BCC

    0.5100

    80.81

    +0.63%

  • JRI

    0.1400

    13.08

    +1.07%

  • AZN

    0.1800

    92.77

    +0.19%

'Big sponge': new CO2 tech taps oceans to tackle global warming
'Big sponge': new CO2 tech taps oceans to tackle global warming / Photo: Patrick T. Fallon - AFP

'Big sponge': new CO2 tech taps oceans to tackle global warming

Floating in the port of Los Angeles, a strange-looking barge covered with pipes and tanks contains a concept that scientists hope to make waves: a new way to use the ocean as a vast carbon dioxide sponge to tackle global warming.

Text size:

Scientists from University of California Los Angeles (UCLA) have been working for two years on SeaChange -- an ambitious project that could one day boost the amount of CO2, a major greenhouse gas, that can be absorbed by our seas.

Their goal is "to use the ocean as a big sponge," according to Gaurav Sant, director of the university's Institute for Carbon Management (ICM).

The oceans, covering most of the Earth, are already the planet's main carbon sinks, acting as a critical buffer in the climate crisis.

They absorb a quarter of all CO2 emissions, as well as 90 percent of the warming that has occurred in recent decades due to increasing greenhouse gases.

But they are feeling the strain. The ocean is acidifying, and rising temperatures are reducing its absorption capacity.

The UCLA team wants to increase that capacity by using an electrochemical process to remove vast quantities of CO2 already in seawater -- rather like wringing out a sponge to help recover its absorptive power.

"If you can take out the carbon dioxide that is in the oceans, you're essentially renewing their capacity to take additional carbon dioxide from the atmosphere," Sant told AFP.

- Trapped -

Engineers built a floating mini-factory on a 100-foot (30-meter) long boat which pumps in seawater and subjects it to an electrical charge.

Chemical reactions triggered by electrolysis convert CO2 dissolved in the seawater into a fine white powder containing calcium carbonate -- the compound found in chalk, limestone and oyster or mussel shells.

This powder can be discarded back into the ocean, where it remains in solid form, thereby storing CO2 "very durably... over tens of thousands of years," explained Sant.

Meanwhile, the pumped water returns to the sea, ready to absorb more carbon dioxide from the atmosphere.

Sant and his team are confident the process will not damage the marine environment, although this will require further testing to confirm.

A potential additional benefit of the technology is that it creates hydrogen as a byproduct. As the so-called "green revolution" progresses, the gas could be widely used to power clean cars, trucks and planes in the future.

Of course, the priority in curbing global warming is for humans to drastically reduce current CO2 emissions -- something we are struggling to achieve.

But in parallel, most scientists say carbon dioxide capture and storage techniques can play an important role in keeping the planet livable.

Carbon dioxide removal (CDR) could help to achieve carbon neutrality by 2050 as it offsets emissions from industries which are particularly difficult to decarbonize, such as aviation, and cement and steel production.

It could help to tackle the stocks of CO2 that have been accumulating in the atmosphere for decades.

- 'Promising solution' -

Keeping global warming under control will require the removal of between 450 billion and 1.1 trillion tons of CO2 from the atmosphere by 2100, according to the first global report dedicated to the topic, released in January.

That would require the CDR sector "to grow at a rate of about 30 percent per year over the next 30 years, much like what happened with wind and solar," said one of its authors, Gregory Nemet.

UCLA's SeaChange technology "fits into a category of a promising solution that could be large enough to be climate-relevant," said Nemet, a professor at the University of Wisconsin-Madison.

By sequestering CO2 in mineral form within the ocean, it differs markedly from existing "direct air capture" (DAC) methods, which involve pumping and storing gas underground through a highly complex and expensive process.

A start-up company, Equatic, plans to scale up the UCLA technology and prove its commercial viability, by selling carbon credits to manufacturers wanting to offset their emissions.

In addition to the Los Angeles barge, a similar boat is currently being tested in Singapore.

Sant hopes data from both sites will quickly lead to the construction of far larger plants that are capable of removing "thousands of tons of carbon" each year.

"We expect to start operating these new plants in 18 to 24 months," he said.

T.Sasaki--JT