The Japan Times - Human brain cells implanted in rats offer research gold mine

EUR -
AED 4.313468
AFN 77.598705
ALL 96.698386
AMD 447.792527
ANG 2.102883
AOA 1077.044807
ARS 1692.205144
AUD 1.764354
AWG 2.114155
AZN 2.001365
BAM 1.955767
BBD 2.361861
BDT 143.307608
BGN 1.957508
BHD 0.442093
BIF 3466.042156
BMD 1.17453
BND 1.514475
BOB 8.102865
BRL 6.365607
BSD 1.17268
BTN 106.04923
BWP 15.537741
BYN 3.457042
BYR 23020.795811
BZD 2.358461
CAD 1.618445
CDF 2630.948518
CHF 0.934916
CLF 0.027253
CLP 1069.11676
CNY 8.28573
CNH 8.284609
COP 4466.125466
CRC 586.590211
CUC 1.17453
CUP 31.125056
CVE 110.26316
CZK 24.276491
DJF 208.826515
DKK 7.472132
DOP 74.548756
DZD 152.289758
EGP 55.571073
ERN 17.617956
ETB 183.229742
FJD 2.668303
FKP 0.877971
GBP 0.878351
GEL 3.175767
GGP 0.877971
GHS 13.461775
GIP 0.877971
GMD 85.741137
GNF 10198.829794
GTQ 8.98185
GYD 245.335906
HKD 9.138141
HNL 30.873485
HRK 7.537789
HTG 153.707435
HUF 385.234681
IDR 19536.845016
ILS 3.785271
IMP 0.877971
INR 106.37734
IQD 1536.174363
IRR 49474.161194
ISK 148.465122
JEP 0.877971
JMD 187.756867
JOD 0.832789
JPY 182.950774
KES 151.217476
KGS 102.713135
KHR 4694.921647
KMF 492.719958
KPW 1057.073078
KRW 1731.880759
KWD 0.360233
KYD 0.977284
KZT 611.589793
LAK 25422.575728
LBP 105012.44747
LKR 362.353953
LRD 206.976546
LSL 19.78457
LTL 3.468083
LVL 0.710462
LYD 6.369894
MAD 10.78842
MDL 19.823669
MGA 5194.913303
MKD 61.548973
MMK 2466.304642
MNT 4164.85284
MOP 9.403343
MRU 46.930217
MUR 53.93488
MVR 18.092159
MWK 2033.466064
MXN 21.157878
MYR 4.812408
MZN 75.064681
NAD 19.78457
NGN 1706.088063
NIO 43.15928
NOK 11.906572
NPR 169.679168
NZD 2.023657
OMR 0.451612
PAB 1.17268
PEN 3.948134
PGK 5.054916
PHP 69.43241
PKR 328.640215
PLN 4.225315
PYG 7876.868545
QAR 4.273829
RON 5.092651
RSD 117.378041
RUB 93.579038
RWF 1706.771516
SAR 4.407079
SBD 9.603843
SCR 17.649713
SDG 706.484352
SEK 10.887784
SGD 1.517615
SHP 0.881202
SLE 28.335591
SLL 24629.319496
SOS 668.988835
SRD 45.275842
STD 24310.407882
STN 24.499591
SVC 10.260829
SYP 12986.570545
SZL 19.77767
THB 37.109332
TJS 10.77682
TMT 4.122602
TND 3.428143
TOP 2.827988
TRY 50.011936
TTD 7.957867
TWD 36.804032
TZS 2902.351563
UAH 49.548473
UGX 4167.930442
USD 1.17453
UYU 46.019232
UZS 14127.764225
VES 314.116117
VND 30897.196663
VUV 141.748205
WST 3.259888
XAF 655.946053
XAG 0.018958
XAU 0.000273
XCD 3.174228
XCG 2.113465
XDR 0.815786
XOF 655.946053
XPF 119.331742
YER 280.129715
ZAR 19.820741
ZMK 10572.187233
ZMW 27.059548
ZWL 378.198309
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    81.17

    0%

  • BCC

    0.2500

    76.51

    +0.33%

  • JRI

    -0.0200

    13.7

    -0.15%

  • RIO

    -1.0800

    75.66

    -1.43%

  • RELX

    0.1000

    40.38

    +0.25%

  • BTI

    -1.2700

    57.1

    -2.22%

  • AZN

    -0.4600

    89.83

    -0.51%

  • GSK

    -0.0700

    48.81

    -0.14%

  • BCE

    0.3100

    23.71

    +1.31%

  • NGG

    0.2400

    74.93

    +0.32%

  • CMSC

    -0.1300

    23.3

    -0.56%

  • CMSD

    -0.1500

    23.25

    -0.65%

  • VOD

    0.0500

    12.59

    +0.4%

  • RYCEF

    -0.2500

    14.6

    -1.71%

  • BP

    -0.2700

    35.26

    -0.77%

Human brain cells implanted in rats offer research gold mine
Human brain cells implanted in rats offer research gold mine / Photo: Sergiu PASCA - Stanford University/AFP

Human brain cells implanted in rats offer research gold mine

Scientists have successfully implanted and integrated human brain cells into newborn rats, creating a new way to study complex psychiatric disorders such as schizophrenia and autism, and perhaps eventually test treatments.

Text size:

Studying how these conditions develop is incredibly difficult -- animals do not experience them like people, and humans cannot simply be opened up for research.

Scientists can assemble small sections of human brain tissue derived from stem cells in petri dishes, and have already done so with more than a dozen brain regions.

But in dishes, "neurons don't grow to the size which a human neuron in an actual human brain would grow", said Sergiu Pasca, the study's lead author and professor of psychiatry and behavioural sciences at Stanford University.

And isolated from a body, they cannot tell us what symptoms a defect will cause.

To overcome those limitations, researchers implanted the groupings of human brain cells, called organoids, into the brains of young rats.

The rats' age was important: human neurons have been implanted into adult rats before, but an animal's brain stops developing at a certain age, limiting how well implanted cells can integrate.

"By transplanting them at these early stages, we found that these organoids can grow relatively large, they become vascularised (receive nutrients) by the rat, and they can cover about a third of a rat's (brain) hemisphere," Pasca said.

- Ethical dilemmas -

To test how well the human neurons integrated with the rat brains and bodies, air was puffed across the animals' whiskers, which prompted electrical activity in the human neurons.

That showed an input connection -- external stimulation of the rat's body was processed by the human tissue in the brain.

The scientists then tested the reverse: could the human neurons send signals back to the rat's body?

They implanted human brain cells altered to respond to blue light, and then trained the rats to expect a "reward" of water from a spout when blue light shone on the neurons via a cable in the animals' skulls.

After two weeks, pulsing the blue light sent the rats scrambling to the spout, according to the research published Wednesday in the journal Nature.

The team has now used the technique to show that organoids developed from patients with Timothy syndrome grow more slowly and display less electrical activity than those from healthy people.

The technique could eventually be used to test new drugs, according to J. Gray Camp of the Roche Institute for Translational Bioengineering, and Barbara Treutlein of ETH Zurich.

It "takes our ability to study human brain development, evolution and disease into uncharted territory", the pair, who were not involved in the study, wrote in a review commissioned by Nature.

The method raises potentially uncomfortable questions -- how much human brain tissue can be implanted into a rat before the animal's nature is changed? Would the method be ethical in primates?

Pasca argued that limitations on how deeply human neurons integrate with the rat brain provide "natural barriers".

Rat brains develop much faster than human ones, "so there's only so much that the rat cortex can integrate".

But in species closer to humans, those barriers might no longer exist, and Pasca said he would not support using the technique in primates for now.

He argued though that there is a "moral imperative" to find ways to better study and treat psychiatric disorders.

"Certainly the more human these models are becoming, the more uncomfortable we feel," he said.

But "human psychiatric disorders are to a large extent uniquely human. So we're going to have to think very carefully... how far we want to go with some of these models moving forward."

T.Kobayashi--JT