The Japan Times - Ancient viruses responsible for our big brains and bodies: study

EUR -
AED 4.301343
AFN 77.611852
ALL 96.514738
AMD 446.868239
ANG 2.096972
AOA 1074.017289
ARS 1697.403887
AUD 1.766826
AWG 2.11114
AZN 1.995739
BAM 1.956099
BBD 2.35916
BDT 143.251875
BGN 1.956099
BHD 0.441567
BIF 3463.32887
BMD 1.171229
BND 1.514231
BOB 8.094236
BRL 6.490135
BSD 1.171279
BTN 104.951027
BWP 16.475516
BYN 3.442526
BYR 22956.085522
BZD 2.35576
CAD 1.613778
CDF 2996.593612
CHF 0.937635
CLF 0.027188
CLP 1066.568306
CNY 8.246564
CNH 8.23796
COP 4521.190411
CRC 584.989331
CUC 1.171229
CUP 31.037565
CVE 110.281841
CZK 24.338023
DJF 208.581852
DKK 7.472562
DOP 73.371204
DZD 152.341263
EGP 55.872532
ERN 17.568433
ETB 181.965387
FJD 2.67474
FKP 0.875386
GBP 0.880988
GEL 3.144796
GGP 0.875386
GHS 13.453054
GIP 0.875386
GMD 85.500123
GNF 10238.563486
GTQ 8.975371
GYD 245.057422
HKD 9.144374
HNL 30.857712
HRK 7.53616
HTG 153.573452
HUF 386.728509
IDR 19556.008162
ILS 3.75619
IMP 0.875386
INR 104.915757
IQD 1534.434317
IRR 49308.735131
ISK 147.141933
JEP 0.875386
JMD 187.41862
JOD 0.830448
JPY 184.451022
KES 150.983056
KGS 102.424413
KHR 4700.717826
KMF 491.916529
KPW 1054.105695
KRW 1728.406292
KWD 0.359837
KYD 0.976149
KZT 606.152563
LAK 25368.873969
LBP 104891.417505
LKR 362.65538
LRD 207.321659
LSL 19.649501
LTL 3.458335
LVL 0.708465
LYD 6.34897
MAD 10.73654
MDL 19.830028
MGA 5326.813434
MKD 61.5594
MMK 2459.916548
MNT 4159.16935
MOP 9.388034
MRU 46.876158
MUR 54.052655
MVR 18.095929
MWK 2031.110162
MXN 21.355061
MYR 4.775145
MZN 74.845892
NAD 19.649501
NGN 1710.181964
NIO 43.106583
NOK 11.874743
NPR 167.921643
NZD 1.99613
OMR 0.451419
PAB 1.171279
PEN 3.944502
PGK 4.982761
PHP 68.60009
PKR 328.173614
PLN 4.207347
PYG 7858.199991
QAR 4.270252
RON 5.07775
RSD 117.397927
RUB 94.264395
RWF 1705.460433
SAR 4.393324
SBD 9.541707
SCR 17.757712
SDG 704.49846
SEK 10.855305
SGD 1.514521
SHP 0.878725
SLE 28.168488
SLL 24560.087729
SOS 668.202038
SRD 45.023799
STD 24242.072559
STN 24.503742
SVC 10.248565
SYP 12951.989104
SZL 19.647
THB 36.805911
TJS 10.793648
TMT 4.099301
TND 3.428524
TOP 2.820038
TRY 50.065939
TTD 7.950214
TWD 36.91585
TZS 2922.446274
UAH 49.525863
UGX 4189.639781
USD 1.171229
UYU 45.987022
UZS 14081.15027
VES 330.473524
VND 30817.959199
VUV 141.753524
WST 3.265184
XAF 656.057184
XAG 0.017437
XAU 0.00027
XCD 3.165305
XCG 2.111022
XDR 0.815925
XOF 656.057184
XPF 119.331742
YER 279.225162
ZAR 19.652061
ZMK 10542.469351
ZMW 26.501047
ZWL 377.135213
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    80.22

    0%

  • CMSC

    -0.1200

    23.17

    -0.52%

  • CMSD

    -0.0300

    23.25

    -0.13%

  • NGG

    -0.2800

    76.11

    -0.37%

  • VOD

    0.0400

    12.84

    +0.31%

  • RYCEF

    0.2800

    15.68

    +1.79%

  • GSK

    0.3200

    48.61

    +0.66%

  • RIO

    0.6900

    78.32

    +0.88%

  • AZN

    0.7500

    91.36

    +0.82%

  • BCE

    -0.0100

    22.84

    -0.04%

  • RELX

    0.0800

    40.73

    +0.2%

  • BTI

    -0.5900

    56.45

    -1.05%

  • JRI

    -0.0500

    13.38

    -0.37%

  • BCC

    -2.9300

    74.77

    -3.92%

  • BP

    0.6300

    33.94

    +1.86%

Ancient viruses responsible for our big brains and bodies: study
Ancient viruses responsible for our big brains and bodies: study / Photo: Peggy Assinck - Altos Labs-Cambridge Institute of Science/AFP

Ancient viruses responsible for our big brains and bodies: study

Ancient viruses that infected vertebrates hundreds of millions of years ago played a pivotal role in the evolution of our advanced brains and large bodies, a study said Thursday.

Text size:

The research, published in the journal Cell, examined the origins of myelin, an insulating layer of fatty tissue that forms around nerves and allows electrical impulses to travel faster.

According to the authors, a gene sequence acquired from retroviruses -- viruses that invade their host's DNA -- is crucial for myelin production, and that code is now found in modern mammals, amphibians and fish.

"The thing I find the most remarkable is that all of the diversity of modern vertebrates that we know of, and the size they've achieved: elephants, giraffes, anacondas, bullfrogs, condors wouldn't have happened," senior author and neuroscientist Robin Franklin of Altos Labs-Cambridge Institute of Science told AFP.

In new research led by Tanay Ghosh, a computational biologist and geneticist in Franklin's lab, analysts trawled through genome databases to try to discover the genetics that were likely associated with the cells that produce myelin.

Specifically, he was interested in exploring mysterious "noncoding regions" of the genome that have no obvious function and were once dismissed as junk, but are now recognized as having evolutionary importance.

Ghosh's search landed upon a particular sequence derived from an endogenous retrovirus, long lurking in our genes, which the team dubbed "RetroMyelin."

To test their finding, researchers carried out experiments in which they knocked down the RetroMyelin sequence in rat cells, and found they no longer produced a basic protein required for myelin formation.

- Faster reactions, bigger bodies -

Next, they searched for RetroMyelin-like sequences in the genomes of other species, finding similar code in jawed vertebrates -- fellow mammals, birds, fish, reptiles and amphibians -- but not in jawless vertebrates or invertebrates.

This led them to believe the sequence appeared in the tree of life around the same time as jaws, which first evolved around 360 million years ago in the Devonian period, called the Age of Fishes.

"There's always been an evolutionary pressure to make nerve fibers conduct electrical impulses quicker," said Franklin. "If they do that quicker, then you can act quicker," he added, which is useful for both predators trying to catch things, and prey trying to flee.

Myelin enables rapid impulse conduction without widening the diameter of nerve cells, allowing them to be packed closer together.

It also provides structural support, meaning nerves can grow longer, allowing for longer limbs.

In myelin's absence, invertebrates have found other ways to transmit signals faster -- giant squids for example have evolved wider nerve cells.

Finally, the team wanted to learn whether the retroviral infection happened once, to a single ancestor species, or whether it happened more than once.

- More discoveries await? -

To answer this, they used computational methods to analyze the RetroMyelin sequences of 22 jawed vertebrate species, finding the sequences were more similar within than between species.

The finding suggested multiple waves of infection led to the diversity of vertebrate species we see today, the team said.

"One tends to think of viruses as pathogens, or disease causing agents," said Franklin.

But the reality is more complicated, he said: at various points in history retroviruses have entered the genome and integrated themselves into a species' reproductive cells, allowing them to be passed down to future generations.

One of the most well known examples is the placenta -- one of the defining characteristics of most mammals -- which we acquired from a pathogen embedded in our genome in the deep past.

Ghosh said the myelin finding could be just another step in an emerging field. "There are still a lot of things to understand still in terms of biology about how these sequences are driving different processes of evolution," he said.

S.Fujimoto--JT