The Japan Times - Climate change: A farm in Rotterdam

EUR -
AED 4.333943
AFN 77.886842
ALL 96.792942
AMD 447.296501
ANG 2.112488
AOA 1082.159122
ARS 1713.458937
AUD 1.696407
AWG 2.124194
AZN 1.996602
BAM 1.947356
BBD 2.379383
BDT 144.483519
BGN 1.981838
BHD 0.444943
BIF 3498.430304
BMD 1.180108
BND 1.500606
BOB 8.192823
BRL 6.20808
BSD 1.181378
BTN 108.03203
BWP 15.549237
BYN 3.382732
BYR 23130.117712
BZD 2.375908
CAD 1.613538
CDF 2543.133159
CHF 0.919263
CLF 0.025867
CLP 1021.391854
CNY 8.197621
CNH 8.187991
COP 4274.41035
CRC 586.16336
CUC 1.180108
CUP 31.272863
CVE 110.782636
CZK 24.314731
DJF 209.728756
DKK 7.46822
DOP 74.287605
DZD 153.336689
EGP 55.568333
ERN 17.701621
ETB 183.211244
FJD 2.604026
FKP 0.861189
GBP 0.863178
GEL 3.180407
GGP 0.861189
GHS 12.928055
GIP 0.861189
GMD 86.725765
GNF 10327.125434
GTQ 9.064695
GYD 247.168748
HKD 9.216882
HNL 31.213903
HRK 7.536877
HTG 154.830622
HUF 380.943748
IDR 19785.927529
ILS 3.659326
IMP 0.861189
INR 106.761956
IQD 1546.531595
IRR 49712.051645
ISK 145.200535
JEP 0.861189
JMD 185.488081
JOD 0.836727
JPY 183.523283
KES 152.387676
KGS 103.200652
KHR 4750.534523
KMF 493.285478
KPW 1062.097242
KRW 1711.664242
KWD 0.362458
KYD 0.984473
KZT 596.578289
LAK 25366.422407
LBP 100958.242999
LKR 365.838373
LRD 219.499673
LSL 19.011247
LTL 3.484552
LVL 0.713836
LYD 7.458173
MAD 10.808314
MDL 20.001122
MGA 5251.480408
MKD 61.658671
MMK 2478.210923
MNT 4206.642931
MOP 9.503692
MRU 47.121434
MUR 53.872178
MVR 18.232606
MWK 2049.847706
MXN 20.52202
MYR 4.671456
MZN 75.231947
NAD 19.011085
NGN 1641.53047
NIO 43.30141
NOK 11.441467
NPR 172.851978
NZD 1.962741
OMR 0.453763
PAB 1.181383
PEN 3.972238
PGK 5.001318
PHP 69.531845
PKR 330.135697
PLN 4.221949
PYG 7854.940943
QAR 4.297069
RON 5.095943
RSD 117.395934
RUB 90.220397
RWF 1714.696992
SAR 4.425624
SBD 9.50943
SCR 16.816716
SDG 709.838278
SEK 10.571614
SGD 1.500395
SHP 0.885387
SLE 28.883091
SLL 24746.274816
SOS 674.433345
SRD 44.873592
STD 24425.853934
STN 25.077296
SVC 10.337309
SYP 13051.493324
SZL 19.011467
THB 37.149753
TJS 11.033804
TMT 4.142179
TND 3.36036
TOP 2.841417
TRY 51.311217
TTD 7.998387
TWD 37.281027
TZS 3054.698637
UAH 50.877442
UGX 4219.703348
USD 1.180108
UYU 45.831275
UZS 14456.323222
VES 436.394019
VND 30706.41137
VUV 140.617793
WST 3.199014
XAF 653.152601
XAG 0.014267
XAU 0.000247
XCD 3.189301
XCG 2.129068
XDR 0.810988
XOF 650.832122
XPF 119.331742
YER 281.308231
ZAR 18.963758
ZMK 10622.392479
ZMW 23.184454
ZWL 379.994309
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.1000

    82.5

    +0.12%

  • BCC

    0.9400

    81.75

    +1.15%

  • JRI

    0.0700

    13.15

    +0.53%

  • NGG

    -0.6600

    84.61

    -0.78%

  • CMSC

    -0.0100

    23.75

    -0.04%

  • CMSD

    0.0300

    24.08

    +0.12%

  • RELX

    -0.2700

    35.53

    -0.76%

  • RIO

    1.4900

    92.52

    +1.61%

  • RYCEF

    0.7000

    16.7

    +4.19%

  • BCE

    -0.0300

    25.83

    -0.12%

  • GSK

    0.8700

    52.47

    +1.66%

  • AZN

    1.3100

    188.41

    +0.7%

  • VOD

    0.2600

    14.91

    +1.74%

  • BTI

    0.3100

    60.99

    +0.51%

  • BP

    -0.1800

    37.7

    -0.48%


Climate change: A farm in Rotterdam




A project that houses cows in a floating barn aims to demonstrate how farming can change its relationship with water and energy.

An overview of the issue of climate change and its effects on agriculture?

Climate change is no longer just a future threat, but a present reality that is already having a significant impact on agriculture worldwide. Rising temperatures, changing precipitation patterns and an increase in extreme weather events pose immense challenges for farmers and threaten

The global average temperature has increased by about 1.1 degrees Celsius since pre-industrial times. This warming is leading to changes in the growing conditions for many crops. Some plant species are sensitive to higher temperatures, which can lead to reduced yields and quality losses. For example, grain filling can be affected in

Changing precipitation patterns and water scarcity
Climate change also affects precipitation patterns, leading to droughts in some regions and flooding in others. Water scarcity is becoming an increasingly pressing problem, especially in areas of intensive agricultural use. Without sufficient irrigation, plants suffer from drought stress, which inhibits growth and reduces yields. On the other hand, heavy rainfall and flooding

Increase in extreme weather events
More frequent and intense extreme weather events such as heat waves, storms and frost periods are having a significant impact on agricultural production. Such events can destroy entire harvests, damage infrastructure and have long-term effects on soil fertility. Farmers have to adapt to unpredictable weather conditions, which makes

Spread of pests and diseases
With rising temperatures and changing climate conditions, pests and plant diseases are also spreading into new areas. Insects, fungi and viruses that were previously limited by climatic conditions can now infest larger areas. This increases the demand for pesticides and poses additional challenges for organic farming.

Impacts on animal husbandry
Livestock farming is also affected by climate change. Heat stresses farm animals and can lead to reduced growth, lower milk production and increased mortality rates. In addition, climate change affects the availability of forage crops and water, which makes animal husbandry even more difficult.

Adapting cultivation practices: Crop rotation, conservation tillage and the use of cover crops can maintain soil fertility and increase resilience to extreme weather.
Breeding climate-resistant varieties: Developing plants that can better cope with heat, drought or flooding is crucial for future food security.
Efficient irrigation systems: Technologies such as drip irrigation reduce water consumption and help to use water more efficiently.
Early warning systems: Weather forecasts and warning systems can help farmers to be better prepared for extreme weather events.
Diversification: Diversifying crops and income sources helps farmers to better cushion risks.

Policy support and global cooperation
Tackling the effects of climate change on agriculture requires policy support and international cooperation. Investments in research and development, education, and infrastructure are necessary to support farmers in their adaptation efforts. Furthermore, it is important to reduce global emissions to mitigate further climate change.

Conclusion
Climate change poses a serious threat to agriculture and global food security. However, the effects can be mitigated through proactive adaptation measures, innovation and political support. It is crucial to act now to safeguard agriculture for future generations and ensure the sustainable nutrition of the world's population.