The Japan Times - Click chemistry, Nobel-winning science that may 'change the world'

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.859325
GBP 0.865754
GEL 3.194674
GGP 0.859325
GHS 12.974143
GIP 0.859325
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.859325
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.859325
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.949348
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.374007
MNT 4229.125697
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.78282
WST 3.21762
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • BTI

    0.4600

    60.68

    +0.76%

  • BP

    -0.1600

    37.88

    -0.42%

  • CMSC

    0.0500

    23.76

    +0.21%

  • BCE

    0.3700

    25.86

    +1.43%

  • RELX

    -0.3700

    35.8

    -1.03%

  • RYCEF

    -0.4300

    16

    -2.69%

  • GSK

    0.9400

    51.6

    +1.82%

  • RIO

    -4.1000

    91.03

    -4.5%

  • BCC

    0.5100

    80.81

    +0.63%

  • NGG

    0.2000

    85.27

    +0.23%

  • VOD

    -0.0600

    14.65

    -0.41%

  • JRI

    0.1400

    13.08

    +1.07%

  • AZN

    0.1800

    92.77

    +0.19%

Click chemistry, Nobel-winning science that may 'change the world'
Click chemistry, Nobel-winning science that may 'change the world' / Photo: ANDREW SILK - AFP/File

Click chemistry, Nobel-winning science that may 'change the world'

The Nobel Chemistry Prize was awarded to three scientists on Tuesday for their work on click chemistry, a way to snap molecules together like Lego that experts say will soon "change the world".

Text size:

But how exactly does it work?

Imagine two people walking through a mostly empty room towards each other then shaking hands.

"That's how a classical chemical reaction is done," said Benjamin Schumann, a chemist at Imperial College, London.

But what if there was lots of furniture and other people clogging up the room?

"They might not meet each other," Schumann said.

Now imagine those people were molecules, tiny groups of atoms that form the basis of chemistry.

"Click chemistry makes it possible for two molecules that are in an environment where you have lots of other things around" to meet and join with each other, he told AFP.

The way click chemistry snaps together molecular building blocks is also often compared to Lego.

But Carolyn Bertozzi, who shared this year's chemistry Nobel with Barry Sharpless and Morten Meldal, said it would take a very special kind of Lego.

Even if two Legos were "surrounded by millions of other very similar plastic toys" they would only click in to each other, she told AFP.

- 'Changed the playing field' -

Around the year 2000, Sharpless and Meldal separately discovered a specific chemical reaction using copper ions as a catalyst which "changed the playing field" and became "the cream of the crop", said Silvia Diez-Gonzalez, a chemist at the Imperial College, London.

Copper has many advantages, including that reactions could involve water and be done at room temperature rather than at high heat which can complicate matters.

This particular way of connecting molecules was far more flexible, efficient and targeted than had ever been possible before.

Since its discovery, chemists have been finding out all the different kinds of molecular architecture they can build with their special new Lego blocks.

"The applications are almost endless," said Tom Brown, a British chemist at Oxford University that has worked on DNA click chemistry.

But there was one problem with using copper as a catalyst. It can be toxic for the cells of living organisms -- such as humans.

So Bertozzi built on the foundations of Sharpless and Meldal's work, designing a copperless "way of using click chemistry with biological systems without killing them," Diez-Gonzalez said.

Previously the molecules clicked together in a straight flat line -- like a seat belt -- but Bertozzi discovered that forcing them "to be a bit bent" made the reaction more stable, Diez-Gonzalez said.

Bertozzi called the field she created bioorthogonal chemistry -- orthogonal means intersecting at right angles.

- 'Tip of the iceberg' -

Diez-Gonzalez said she was "a bit surprised" that the field had been awarded with a Nobel so soon, because "there are not that many commercial applications out there yet".

But the future looks bright.

"We're kind of at the tip of the iceberg," said American Chemical Society President Angela Wilson, adding that this "chemistry is going to change the world."

Bertozzi said that there are so many potential uses for click chemistry, that "I can't even really enumerate them".

One use is for developing new targeted medicines, some of which could involve "doing chemistry inside human patients to make sure that drugs go to the right place," she told the Nobel conference.

Her lab has started research on potential treatments for severe Covid, she added.

Another hope is that it can lead to a more targeted way to diagnose and treat cancer, as well make chemotherapy have fewer, less severe side effects.

It has even created a way to make the bacteria that causes Legionnaires' disease become fluorescent so it easier to spot in water supplies.

Already, click chemistry has been used "to create some very, very durable polymers" that protect against heat, as well as in forms of glue in nano-chemistry, Meldal told AFP.

 

"I think it's going to completely revolutionise everything from medicine to materials," she said.

T.Maeda--JT