The Japan Times - Mammals became warm-blooded later than thought: study

EUR -
AED 4.276798
AFN 76.973093
ALL 96.541337
AMD 443.660189
ANG 2.0846
AOA 1067.888653
ARS 1669.958677
AUD 1.752514
AWG 2.096182
AZN 1.984351
BAM 1.955625
BBD 2.34549
BDT 142.477215
BGN 1.956439
BHD 0.439061
BIF 3440.791247
BMD 1.164546
BND 1.508565
BOB 8.047278
BRL 6.334667
BSD 1.164496
BTN 104.702605
BWP 15.471612
BYN 3.348
BYR 22825.091832
BZD 2.34209
CAD 1.610159
CDF 2599.265981
CHF 0.936209
CLF 0.027366
CLP 1073.571668
CNY 8.233458
CNH 8.232219
COP 4424.302993
CRC 568.848955
CUC 1.164546
CUP 30.860456
CVE 110.255106
CZK 24.203336
DJF 207.371392
DKK 7.470448
DOP 74.533312
DZD 151.505205
EGP 55.295038
ERN 17.468183
ETB 180.629892
FJD 2.632397
FKP 0.873977
GBP 0.872973
GEL 3.138497
GGP 0.873977
GHS 13.246811
GIP 0.873977
GMD 85.012236
GNF 10119.091982
GTQ 8.9202
GYD 243.638138
HKD 9.065875
HNL 30.671248
HRK 7.535429
HTG 152.446321
HUF 381.994667
IDR 19435.740377
ILS 3.768132
IMP 0.873977
INR 104.760771
IQD 1525.563106
IRR 49041.926882
ISK 149.038983
JEP 0.873977
JMD 186.393274
JOD 0.825709
JPY 180.924237
KES 150.636483
KGS 101.839952
KHR 4662.581612
KMF 491.43861
KPW 1048.137083
KRW 1716.311573
KWD 0.357481
KYD 0.970513
KZT 588.927154
LAK 25252.733992
LBP 104283.942272
LKR 359.197768
LRD 204.961608
LSL 19.736529
LTL 3.438601
LVL 0.704422
LYD 6.330432
MAD 10.755735
MDL 19.814222
MGA 5194.533878
MKD 61.634469
MMK 2445.172268
MNT 4132.506664
MOP 9.338362
MRU 46.438833
MUR 53.651052
MVR 17.938355
MWK 2019.3188
MXN 21.165153
MYR 4.787492
MZN 74.426542
NAD 19.736529
NGN 1688.68458
NIO 42.856154
NOK 11.767853
NPR 167.523968
NZD 2.015483
OMR 0.447772
PAB 1.164595
PEN 3.914449
PGK 4.941557
PHP 68.66747
PKR 326.476804
PLN 4.229804
PYG 8009.281302
QAR 4.244719
RON 5.092096
RSD 117.389466
RUB 88.93302
RWF 1694.347961
SAR 4.370508
SBD 9.584899
SCR 15.774978
SDG 700.4784
SEK 10.946786
SGD 1.508673
SHP 0.873711
SLE 27.603998
SLL 24419.93473
SOS 664.340387
SRD 44.985272
STD 24103.740676
STN 24.497802
SVC 10.190086
SYP 12876.900539
SZL 19.72123
THB 37.119932
TJS 10.684641
TMT 4.087555
TND 3.416093
TOP 2.803946
TRY 49.523506
TTD 7.894292
TWD 36.437508
TZS 2841.64501
UAH 48.888813
UGX 4119.630333
USD 1.164546
UYU 45.545913
UZS 13931.74986
VES 296.437311
VND 30697.419423
VUV 142.156724
WST 3.247609
XAF 655.898144
XAG 0.019993
XAU 0.000277
XCD 3.147243
XCG 2.098812
XDR 0.815727
XOF 655.898144
XPF 119.331742
YER 277.802752
ZAR 19.711451
ZMK 10482.311144
ZMW 26.923584
ZWL 374.983176
  • RBGPF

    0.0000

    78.35

    0%

  • JRI

    0.0400

    13.79

    +0.29%

  • NGG

    -0.5000

    75.41

    -0.66%

  • BCE

    0.3300

    23.55

    +1.4%

  • SCS

    -0.0900

    16.14

    -0.56%

  • CMSC

    -0.0500

    23.43

    -0.21%

  • CMSD

    -0.0700

    23.25

    -0.3%

  • BCC

    -1.2100

    73.05

    -1.66%

  • RELX

    -0.2200

    40.32

    -0.55%

  • GSK

    -0.1600

    48.41

    -0.33%

  • RYCEF

    -0.0500

    14.62

    -0.34%

  • RIO

    -0.6700

    73.06

    -0.92%

  • VOD

    -0.1630

    12.47

    -1.31%

  • AZN

    0.1500

    90.18

    +0.17%

  • BTI

    -1.0300

    57.01

    -1.81%

  • BP

    -1.4000

    35.83

    -3.91%

Mammals became warm-blooded later than thought: study
Mammals became warm-blooded later than thought: study / Photo: IAN KINGTON - AFP/File

Mammals became warm-blooded later than thought: study

The ancestors of mammals started to become warm-blooded around 20 million years later than previously thought, researchers suggested Wednesday, after analysing inner-ear fossils hoping to solve "one of the great unsolved mysteries of palaeontology".

Text size:

Warm-bloodedness is one of the quintessential characteristics of mammals, along with fur, but exactly when they first evolved the feature has long been a subject of debate.

Previous research has indicated that the ancestors of mammals began evolving warm-bloodedness, or endothermy, around 252 million years ago -- around the time of the Permian extinction, known as the "Great Dying".

However figuring out the timeline has proved difficult.

"The problem is that you cannot stick thermometers in your fossils, so you cannot measure their body temperature," said Ricardo Araujo of the University of Lisbon, one of the authors of a new study in the journal Nature.

He was part of an international team of researchers that found a new way to determine how body heat changed throughout time, by examining the semicircular canals in the inner ears of 56 extinct species of mammal ancestors.

Fluid runs through the tiny ear canals, which help animals keep their balance.

The researchers realised that as body temperatures warmed up, so did the ear fluid.

Araujo gave the example of oil used to fry hot chips.

Before you warm the oil up, it is "very viscous, very dense," he told AFP.

"But then when you heat it up, you'll see that the oil is much runnier, it flows much more easily."

The runnier ear fluid led to animals evolving narrower canals -- which can be measured in fossils, allowing the researchers to track body temperature over time.

Unlike previous research on this subject, the team developed a model that not only works on extinct mammal ancestors, but also living mammals, including humans.

"It can look at your inner ear and tell you how warm-blooded you are -- that's how accurate the model is," lead study author Romain David of London's Natural History Museum told AFP.

Using the model, they traced the beginnings of warm-bloodedness to around 233 million ago, in the Late Triassic period.

- 'Not a gradual, slow process' -

Michael Benton, a palaeontologist at Britain's University of Bristol who was not involved in the study, said the new metric "seems to work well for a wide array of modern vertebrates".

"It doesn't just provide a yes-no answer, but actually scales the 'degree' of endothermy in terms of actual typical body setpoint temperature," he told AFP.

Benton, whose previous research had given the 252 million years date, said the transition to warm-bloodedness likely took place in stages, and "there were several significant prior steps before this semicircular canal switch".

Araujo said the new research suggested that warm-bloodedness came about simply and "very quickly in geological terms, in less than a million years".

"It was not a gradual, slow process over tens of millions of years as previously thought".

David said it seemed unlikely that warm-bloodedness would begin around the extinction event 252 million years ago, because global temperatures were extremely hot then.

That would have been a disadvantage for warm-blooded animals -- but they could have thrived as temperatures cooled in the following millions of years.

"Being an endotherm allows you to be more independent of the whims of the climate, to run faster, run longer, explore different habitats, explore the night, explore polar regions, make long migrations," Araujo said.

"There were a lot of innovations at the time that started to define what a mammal is -- but also ultimately what a human being would be."

T.Kobayashi--JT