The Japan Times - Observing quantum weirdness in our world: Nobel physics explained

EUR -
AED 4.277424
AFN 76.282379
ALL 96.389901
AMD 444.278751
ANG 2.0846
AOA 1067.888653
ARS 1666.882107
AUD 1.752778
AWG 2.096182
AZN 1.984351
BAM 1.954928
BBD 2.344654
BDT 142.403852
BGN 1.956425
BHD 0.438198
BIF 3455.206503
BMD 1.164546
BND 1.508021
BOB 8.044377
BRL 6.334667
BSD 1.164081
BTN 104.66486
BWP 15.466034
BYN 3.346807
BYR 22825.091832
BZD 2.341246
CAD 1.610276
CDF 2599.265981
CHF 0.936525
CLF 0.027366
CLP 1073.571668
CNY 8.233458
CNH 8.232219
COP 4463.819362
CRC 568.64633
CUC 1.164546
CUP 30.860456
CVE 110.752812
CZK 24.203336
DJF 206.963485
DKK 7.470448
DOP 74.822506
DZD 151.068444
EGP 55.295038
ERN 17.468183
ETB 180.679691
FJD 2.632397
FKP 0.872083
GBP 0.872973
GEL 3.138497
GGP 0.872083
GHS 13.3345
GIP 0.872083
GMD 85.012236
GNF 10116.993527
GTQ 8.917022
GYD 243.550308
HKD 9.065929
HNL 30.604708
HRK 7.535429
HTG 152.392019
HUF 381.994667
IDR 19435.740377
ILS 3.768132
IMP 0.872083
INR 104.760771
IQD 1525.554607
IRR 49041.926882
ISK 149.038983
JEP 0.872083
JMD 186.32688
JOD 0.825709
JPY 180.935883
KES 150.58016
KGS 101.839952
KHR 4664.005142
KMF 491.43861
KPW 1048.083022
KRW 1716.311573
KWD 0.357481
KYD 0.970163
KZT 588.714849
LAK 25258.992337
LBP 104285.050079
LKR 359.069821
LRD 206.012492
LSL 19.73949
LTL 3.438601
LVL 0.704422
LYD 6.347216
MAD 10.756329
MDL 19.807079
MGA 5225.31607
MKD 61.612515
MMK 2445.475195
MNT 4130.063083
MOP 9.335036
MRU 46.419225
MUR 53.689904
MVR 17.938355
MWK 2022.815938
MXN 21.164687
MYR 4.787492
MZN 74.426542
NAD 19.739485
NGN 1688.68458
NIO 42.826206
NOK 11.767853
NPR 167.464295
NZD 2.015483
OMR 0.446978
PAB 1.164176
PEN 4.096293
PGK 4.876539
PHP 68.66747
PKR 326.50949
PLN 4.229804
PYG 8006.428369
QAR 4.240169
RON 5.092096
RSD 117.610988
RUB 88.93302
RWF 1689.755523
SAR 4.37074
SBD 9.584899
SCR 15.748939
SDG 700.4784
SEK 10.946786
SGD 1.508557
SHP 0.873711
SLE 27.603998
SLL 24419.93473
SOS 665.542019
SRD 44.985272
STD 24103.740676
STN 24.921274
SVC 10.184839
SYP 12877.828498
SZL 19.739476
THB 37.119932
TJS 10.680789
TMT 4.087555
TND 3.436865
TOP 2.803946
TRY 49.523506
TTD 7.89148
TWD 36.437508
TZS 2835.668687
UAH 48.86364
UGX 4118.162907
USD 1.164546
UYU 45.529689
UZS 13980.369136
VES 296.437311
VND 30697.419423
VUV 142.156196
WST 3.249257
XAF 655.661697
XAG 0.019993
XAU 0.000278
XCD 3.147243
XCG 2.098055
XDR 0.815205
XOF 655.061029
XPF 119.331742
YER 277.802752
ZAR 19.711451
ZMK 10482.311144
ZMW 26.913878
ZWL 374.983176
  • RBGPF

    0.0000

    78.35

    0%

  • NGG

    -0.5000

    75.41

    -0.66%

  • CMSC

    -0.0500

    23.43

    -0.21%

  • GSK

    -0.1600

    48.41

    -0.33%

  • RIO

    -0.6700

    73.06

    -0.92%

  • RELX

    -0.2200

    40.32

    -0.55%

  • BTI

    -1.0300

    57.01

    -1.81%

  • SCS

    -0.0900

    16.14

    -0.56%

  • BCC

    -1.2100

    73.05

    -1.66%

  • JRI

    0.0400

    13.79

    +0.29%

  • CMSD

    -0.0700

    23.25

    -0.3%

  • AZN

    0.1500

    90.18

    +0.17%

  • RYCEF

    -0.0500

    14.62

    -0.34%

  • BCE

    0.3300

    23.55

    +1.4%

  • VOD

    -0.1630

    12.47

    -1.31%

  • BP

    -1.4000

    35.83

    -3.91%

Observing quantum weirdness in our world: Nobel physics explained
Observing quantum weirdness in our world: Nobel physics explained / Photo: HO - GOOGLE/AFP/File

Observing quantum weirdness in our world: Nobel physics explained

The Nobel Prize in Physics was awarded to three scientists on Tuesday for discovering that a bizarre barrier-defying phenomenon in the quantum realm could be observed on an electrical circuit in our classical world.

Text size:

The discovery, which involved an effect called quantum tunnelling, laid the foundations for technology now being used by Google and IBM aiming to build the quantum computers of the future.

Here is what you need to know about the Nobel-winning work by John Clarke of the UK, Frenchman Michel Devoret and American John Martinis.

- What is the quantum world? -

In the classical or "macroscopic" world -- which includes everything you can see around you -- everything behaves according to the trustworthy rules of traditional physics.

But when things get extremely small, to around the scale of an atom, these laws no longer apply. That is when quantum mechanics takes over.

Just one oddity of the quantum world is called superposition, in which a particle can exist in multiple locations at once -- until it is observed, at least.

However scientists have struggled to directly observe quantum mechanics in this "microscopic" world -- which somewhat confusingly cannot be seen through a microscope.

- What is quantum tunnelling? -

Quantum tunnelling is a strange effect that physicists first theorised almost a century ago.

Imagine a man trying to climb a mountain, Eleanor Crane, a quantum physicist at King's College London, told AFP.

In the classical world, if the climber is too tired he will not make it to the other side.

But if a particle is weak in the quantum world, there is still a "a probability of finding it on the other side of the mountain," Crane said.

Because the particle is in superposition, it could have been on both sides of the mountain simultaneously. But if you then, for example, took a picture of the particle, it would then have to pick a side.

- What did the Nobel-winners do? -

In the mid-1980s, Clarke, Devoret and Martinis built a very small -- but not quantum-level -- electrical circuit.

They set it up with two superconductors, which are cooled to almost the lowest possible temperature so they have no electrical resistance.

They then separated the two superconductors with a thin layer of material.

This would break a normal electrical circuit, but thanks to quantum tunnelling, some electrons could appear on the other side.

- Why is that important? -

French physicist Alain Aspect, a 2022 physics Nobel laureate, told AFP that an outstanding question in the field had been whether an object in our macroscopic world could "behave in a quantum way".

By illustrating quantum effects on this "somewhat large object -- though not large on our scale", the new Nobel laureates answered that question with a resounding yes, Aspect said.

Scientists could now observe this quantum effect using a normal microscope, offering a new view of this weird world.

- What about quantum computing? -

The discovery's biggest technological legacy may be that it laid the groundwork for the development of superconducting quantum bits.

While classical computers have bits that work in ones and zeros, quantum bits, or qubits, can exist in two states at once.

This gives them massive potential to spark a range of breakthrough -- though they have yet to fully live up to the hype.

Crane estimated that quantum computers could be powerful enough to "change the course of society" in the next five to 10 years.

The new Nobel laureates "set the foundation for a lot of technology that many companies are investing millions of dollars in right now to try to realise large-scale quantum computers that can actually solve certain types of problems much faster than our classical alternatives," physicist Gregory Quiroz at Johns Hopkins University told AFP.

However there are several other leading techniques in the race to build to build a quantum computer, including neutral atoms and ion traps.

The Nobel-winning work also contributed to "extremely sensitive methods of measuring electromagnetic fields and magnetic fields that rely on these kinds of circuits," Aspect added.

H.Takahashi--JT