The Japan Times - What are regulatory T-cells? Nobel-winning science explained

EUR -
AED 4.277424
AFN 76.282379
ALL 96.389901
AMD 444.278751
ANG 2.0846
AOA 1067.888653
ARS 1666.882107
AUD 1.752778
AWG 2.096182
AZN 1.984351
BAM 1.954928
BBD 2.344654
BDT 142.403852
BGN 1.956425
BHD 0.438198
BIF 3455.206503
BMD 1.164546
BND 1.508021
BOB 8.044377
BRL 6.334667
BSD 1.164081
BTN 104.66486
BWP 15.466034
BYN 3.346807
BYR 22825.091832
BZD 2.341246
CAD 1.610276
CDF 2599.265981
CHF 0.936525
CLF 0.027366
CLP 1073.571668
CNY 8.233458
CNH 8.232219
COP 4463.819362
CRC 568.64633
CUC 1.164546
CUP 30.860456
CVE 110.752812
CZK 24.203336
DJF 206.963485
DKK 7.470448
DOP 74.822506
DZD 151.068444
EGP 55.295038
ERN 17.468183
ETB 180.679691
FJD 2.632397
FKP 0.872083
GBP 0.872973
GEL 3.138497
GGP 0.872083
GHS 13.3345
GIP 0.872083
GMD 85.012236
GNF 10116.993527
GTQ 8.917022
GYD 243.550308
HKD 9.065929
HNL 30.604708
HRK 7.535429
HTG 152.392019
HUF 381.994667
IDR 19435.740377
ILS 3.768132
IMP 0.872083
INR 104.760771
IQD 1525.554607
IRR 49041.926882
ISK 149.038983
JEP 0.872083
JMD 186.32688
JOD 0.825709
JPY 180.935883
KES 150.58016
KGS 101.839952
KHR 4664.005142
KMF 491.43861
KPW 1048.083022
KRW 1716.311573
KWD 0.357481
KYD 0.970163
KZT 588.714849
LAK 25258.992337
LBP 104285.050079
LKR 359.069821
LRD 206.012492
LSL 19.73949
LTL 3.438601
LVL 0.704422
LYD 6.347216
MAD 10.756329
MDL 19.807079
MGA 5225.31607
MKD 61.612515
MMK 2445.475195
MNT 4130.063083
MOP 9.335036
MRU 46.419225
MUR 53.689904
MVR 17.938355
MWK 2022.815938
MXN 21.164687
MYR 4.787492
MZN 74.426542
NAD 19.739485
NGN 1688.68458
NIO 42.826206
NOK 11.767853
NPR 167.464295
NZD 2.015483
OMR 0.446978
PAB 1.164176
PEN 4.096293
PGK 4.876539
PHP 68.66747
PKR 326.50949
PLN 4.229804
PYG 8006.428369
QAR 4.240169
RON 5.092096
RSD 117.610988
RUB 88.93302
RWF 1689.755523
SAR 4.37074
SBD 9.584899
SCR 15.748939
SDG 700.4784
SEK 10.946786
SGD 1.508557
SHP 0.873711
SLE 27.603998
SLL 24419.93473
SOS 665.542019
SRD 44.985272
STD 24103.740676
STN 24.921274
SVC 10.184839
SYP 12877.828498
SZL 19.739476
THB 37.119932
TJS 10.680789
TMT 4.087555
TND 3.436865
TOP 2.803946
TRY 49.523506
TTD 7.89148
TWD 36.437508
TZS 2835.668687
UAH 48.86364
UGX 4118.162907
USD 1.164546
UYU 45.529689
UZS 13980.369136
VES 296.437311
VND 30697.419423
VUV 142.156196
WST 3.249257
XAF 655.661697
XAG 0.019993
XAU 0.000278
XCD 3.147243
XCG 2.098055
XDR 0.815205
XOF 655.061029
XPF 119.331742
YER 277.802752
ZAR 19.711451
ZMK 10482.311144
ZMW 26.913878
ZWL 374.983176
  • RBGPF

    0.0000

    78.35

    0%

  • NGG

    -0.5000

    75.41

    -0.66%

  • CMSC

    -0.0500

    23.43

    -0.21%

  • GSK

    -0.1600

    48.41

    -0.33%

  • RIO

    -0.6700

    73.06

    -0.92%

  • RELX

    -0.2200

    40.32

    -0.55%

  • BTI

    -1.0300

    57.01

    -1.81%

  • SCS

    -0.0900

    16.14

    -0.56%

  • BCC

    -1.2100

    73.05

    -1.66%

  • JRI

    0.0400

    13.79

    +0.29%

  • CMSD

    -0.0700

    23.25

    -0.3%

  • AZN

    0.1500

    90.18

    +0.17%

  • RYCEF

    -0.0500

    14.62

    -0.34%

  • BCE

    0.3300

    23.55

    +1.4%

  • VOD

    -0.1630

    12.47

    -1.31%

  • BP

    -1.4000

    35.83

    -3.91%

What are regulatory T-cells? Nobel-winning science explained
What are regulatory T-cells? Nobel-winning science explained / Photo: Jonathan Nackstrand - AFP

What are regulatory T-cells? Nobel-winning science explained

The Nobel Prize in Medicine was awarded on Monday to three scientists for discovering how a particular kind of cell can stop the body's immune system from attacking itself.

Text size:

The discovery of these "regulatory T-cells" has raised hopes of finding new ways to fight autoimmune diseases and cancer, though treatments based on the work have yet to become widely available.

After Americans Mary Brunkow and Fred Ramsdell and Japan's Shimon Sakaguchi were announced new Nobel laureates at a ceremony in Stockholm, here is what you need to know about their work.

- What is the immune system? -

The immune system is your body's first line of defence against invaders such as microbes that could give you an infection.

Its most powerful weapons are white blood cells called T-cells. They seek out, identify and destroy these invading germs -- or other unwanted outsiders such as cancerous cells -- throughout the body.

But sometimes these T-cells identify the wrong target and attack healthy cells, which causes a range of autoimmune diseases such as type 1 diabetes and lupus.

Enter regulatory T-cells -- also called Tregs -- which the Nobel committee dubbed the body's "security guards".

"They put the brakes on the immune system to prevent it from attacking something that it shouldn't," Jonathan Fisher, head of the innate immune engineering laboratory at University College London, told AFP.

For a long time, it had been thought this crucial regulation role was performed entirely by the thymus, a small gland in the upper chest.

T-cells have things called "receptors" which make sure they can detect the shape of an invading microbe -- such as the famously spiky Covid-19 virus.

When T-cells grow in the thymus, the gland has a way to eliminate any that have receptors which match healthy cells, to avoid friendly fire in the future.

But what if some of these rogue T-cells slip through?

- What did the Nobel winners do? -

Some scientists had once thought there could be some other cell out there, patrolling for escapees.

But by the 1980s, most researchers had abandoned this idea -- except Sakaguchi.

His team took T-cells from one mouse and injected them into another which had no thymus. The mouse was suddenly protected against autoimmune diseases, showing that something other than the gland must be able to fight off self-attacking T-cells.

A decade later, Brunkow and Ramsdell were investigating why the males of a mutated strain of mice called "scurfy" only lived for a few weeks.

In 2021, they were able to prove that a mutation of the gene FOXP3 caused both scurfy and a rare autoimmune disease in humans called IPEX.

Scientists including Sakaguchi were then able to show that FOXP3 controls the development of regulatory T-cells.

- How does this help us? -

A new field of research has been probing exactly what this discovery means for human health.

French immunologist Divi Cornec told AFP that "a defect in regulatory T-cells" can make autoimmune diseases more severe.

These cells also play a "crucial role in preventing transplanted organs from being rejected," Cornec said.

Cancer can also "hijack" regulatory T-cells to help it escape the immune system, Fisher said.

When this happens, the cells crack down too hard on the immune system -- like an overzealous security guard -- and allow the tumour to grow.

- What about new drugs? -

There are now over 200 clinical trials testing treatments involving regulatory T-cells, according to the Nobel ceremony.

However the breakthroughs which won Monday's Nobel have not yet led to a drug that is currently in wide use.

On Monday, Sakaguchi said he hopes the Nobel spurs the field "in a direction where it can be applied in actual bedside and clinical settings".

Fisher emphasised that a lot of progress had been made over the last five years -- and that these things take a lot of time and money.

"There is a big gap between our scientific understanding of the immune system and our ability to investigate it and manipulate it in a lab -- and our ability to actually deliver a safe-in-humans drug product that will have a consistent and beneficial effect," Fisher said.

S.Yamamoto--JT