The Japan Times - What are regulatory T-cells? Nobel-winning science explained

EUR -
AED 4.39647
AFN 79.010777
ALL 96.7817
AMD 453.834235
ANG 2.142963
AOA 1097.770504
ARS 1728.714548
AUD 1.697422
AWG 2.154839
AZN 2.03606
BAM 1.959479
BBD 2.410826
BDT 146.2646
BGN 2.010429
BHD 0.451359
BIF 3555.483592
BMD 1.197133
BND 1.514243
BOB 8.270527
BRL 6.218144
BSD 1.196947
BTN 110.127756
BWP 15.609305
BYN 3.381248
BYR 23463.797441
BZD 2.40732
CAD 1.614512
CDF 2702.527156
CHF 0.914657
CLF 0.026043
CLP 1028.337353
CNY 8.318156
CNH 8.313415
COP 4373.125105
CRC 592.211831
CUC 1.197133
CUP 31.724012
CVE 110.884406
CZK 24.328187
DJF 212.75416
DKK 7.467485
DOP 75.419599
DZD 154.65435
EGP 56.059366
ERN 17.956988
ETB 186.200377
FJD 2.621956
FKP 0.868641
GBP 0.866784
GEL 3.226251
GGP 0.868641
GHS 13.114581
GIP 0.868641
GMD 88.00166
GNF 10476.106643
GTQ 9.184243
GYD 250.420144
HKD 9.344996
HNL 31.588305
HRK 7.535923
HTG 156.894557
HUF 380.549872
IDR 20097.400931
ILS 3.704161
IMP 0.868641
INR 109.934056
IQD 1568.04388
IRR 50429.2077
ISK 144.996855
JEP 0.868641
JMD 187.812603
JOD 0.848796
JPY 183.318702
KES 154.514154
KGS 104.688869
KHR 4816.661042
KMF 493.218172
KPW 1077.499653
KRW 1713.586906
KWD 0.366789
KYD 0.997473
KZT 601.288873
LAK 25747.338611
LBP 102474.544325
LKR 370.335275
LRD 221.435728
LSL 18.885656
LTL 3.534821
LVL 0.724134
LYD 7.519117
MAD 10.83945
MDL 20.132798
MGA 5357.167785
MKD 61.629467
MMK 2514.472536
MNT 4270.0428
MOP 9.623167
MRU 47.746641
MUR 54.05048
MVR 18.507873
MWK 2075.496582
MXN 20.615098
MYR 4.704817
MZN 76.329328
NAD 18.885656
NGN 1661.703631
NIO 44.052706
NOK 11.415096
NPR 176.204811
NZD 1.969152
OMR 0.460301
PAB 1.196947
PEN 4.002915
PGK 5.201766
PHP 70.529025
PKR 334.819598
PLN 4.205952
PYG 8032.0796
QAR 4.363392
RON 5.097505
RSD 117.394378
RUB 90.079313
RWF 1746.378689
SAR 4.490097
SBD 9.670049
SCR 16.594223
SDG 720.018515
SEK 10.539112
SGD 1.512703
SHP 0.898159
SLE 29.091786
SLL 25103.269553
SOS 682.882058
SRD 45.495226
STD 24778.226215
STN 24.546083
SVC 10.473663
SYP 13239.776792
SZL 18.879445
THB 37.386326
TJS 11.179589
TMT 4.189964
TND 3.427835
TOP 2.882408
TRY 52.027807
TTD 8.124253
TWD 37.561827
TZS 3070.644609
UAH 51.226874
UGX 4257.99405
USD 1.197133
UYU 45.295038
UZS 14565.345295
VES 429.143458
VND 31125.445585
VUV 143.139968
WST 3.252382
XAF 657.190824
XAG 0.010137
XAU 0.00022
XCD 3.23531
XCG 2.15725
XDR 0.816474
XOF 657.190824
XPF 119.331742
YER 285.394994
ZAR 18.826046
ZMK 10775.631872
ZMW 23.669438
ZWL 385.476184
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    82.4

    0%

  • CMSD

    0.0392

    24.09

    +0.16%

  • BCC

    -0.5500

    80.3

    -0.68%

  • RELX

    -1.2100

    36.17

    -3.35%

  • NGG

    0.3900

    85.07

    +0.46%

  • BCE

    0.2200

    25.49

    +0.86%

  • CMSC

    0.0100

    23.71

    +0.04%

  • RYCEF

    -0.1700

    16.43

    -1.03%

  • VOD

    0.1400

    14.71

    +0.95%

  • GSK

    0.5600

    50.66

    +1.11%

  • RIO

    1.7600

    95.13

    +1.85%

  • JRI

    -0.0500

    12.94

    -0.39%

  • AZN

    -0.6300

    92.59

    -0.68%

  • BTI

    0.0600

    60.22

    +0.1%

  • BP

    0.3400

    38.04

    +0.89%

What are regulatory T-cells? Nobel-winning science explained
What are regulatory T-cells? Nobel-winning science explained / Photo: Jonathan Nackstrand - AFP

What are regulatory T-cells? Nobel-winning science explained

The Nobel Prize in Medicine was awarded on Monday to three scientists for discovering how a particular kind of cell can stop the body's immune system from attacking itself.

Text size:

The discovery of these "regulatory T-cells" has raised hopes of finding new ways to fight autoimmune diseases and cancer, though treatments based on the work have yet to become widely available.

After Americans Mary Brunkow and Fred Ramsdell and Japan's Shimon Sakaguchi were announced new Nobel laureates at a ceremony in Stockholm, here is what you need to know about their work.

- What is the immune system? -

The immune system is your body's first line of defence against invaders such as microbes that could give you an infection.

Its most powerful weapons are white blood cells called T-cells. They seek out, identify and destroy these invading germs -- or other unwanted outsiders such as cancerous cells -- throughout the body.

But sometimes these T-cells identify the wrong target and attack healthy cells, which causes a range of autoimmune diseases such as type 1 diabetes and lupus.

Enter regulatory T-cells -- also called Tregs -- which the Nobel committee dubbed the body's "security guards".

"They put the brakes on the immune system to prevent it from attacking something that it shouldn't," Jonathan Fisher, head of the innate immune engineering laboratory at University College London, told AFP.

For a long time, it had been thought this crucial regulation role was performed entirely by the thymus, a small gland in the upper chest.

T-cells have things called "receptors" which make sure they can detect the shape of an invading microbe -- such as the famously spiky Covid-19 virus.

When T-cells grow in the thymus, the gland has a way to eliminate any that have receptors which match healthy cells, to avoid friendly fire in the future.

But what if some of these rogue T-cells slip through?

- What did the Nobel winners do? -

Some scientists had once thought there could be some other cell out there, patrolling for escapees.

But by the 1980s, most researchers had abandoned this idea -- except Sakaguchi.

His team took T-cells from one mouse and injected them into another which had no thymus. The mouse was suddenly protected against autoimmune diseases, showing that something other than the gland must be able to fight off self-attacking T-cells.

A decade later, Brunkow and Ramsdell were investigating why the males of a mutated strain of mice called "scurfy" only lived for a few weeks.

In 2021, they were able to prove that a mutation of the gene FOXP3 caused both scurfy and a rare autoimmune disease in humans called IPEX.

Scientists including Sakaguchi were then able to show that FOXP3 controls the development of regulatory T-cells.

- How does this help us? -

A new field of research has been probing exactly what this discovery means for human health.

French immunologist Divi Cornec told AFP that "a defect in regulatory T-cells" can make autoimmune diseases more severe.

These cells also play a "crucial role in preventing transplanted organs from being rejected," Cornec said.

Cancer can also "hijack" regulatory T-cells to help it escape the immune system, Fisher said.

When this happens, the cells crack down too hard on the immune system -- like an overzealous security guard -- and allow the tumour to grow.

- What about new drugs? -

There are now over 200 clinical trials testing treatments involving regulatory T-cells, according to the Nobel ceremony.

However the breakthroughs which won Monday's Nobel have not yet led to a drug that is currently in wide use.

On Monday, Sakaguchi said he hopes the Nobel spurs the field "in a direction where it can be applied in actual bedside and clinical settings".

Fisher emphasised that a lot of progress had been made over the last five years -- and that these things take a lot of time and money.

"There is a big gap between our scientific understanding of the immune system and our ability to investigate it and manipulate it in a lab -- and our ability to actually deliver a safe-in-humans drug product that will have a consistent and beneficial effect," Fisher said.

S.Yamamoto--JT