The Japan Times - Webb telescope spots its first star -- and takes a selfie

EUR -
AED 4.392152
AFN 77.725587
ALL 96.672854
AMD 453.321241
ANG 2.140553
AOA 1096.536528
ARS 1726.354217
AUD 1.702659
AWG 2.15391
AZN 2.033848
BAM 1.957275
BBD 2.408115
BDT 146.100104
BGN 2.008168
BHD 0.450751
BIF 3541.969294
BMD 1.195786
BND 1.51254
BOB 8.261226
BRL 6.227054
BSD 1.195601
BTN 110.003901
BWP 15.59175
BYN 3.377445
BYR 23437.408869
BZD 2.404612
CAD 1.615896
CDF 2678.561483
CHF 0.916074
CLF 0.026
CLP 1026.642284
CNY 8.316274
CNH 8.309949
COP 4352.661647
CRC 591.5458
CUC 1.195786
CUP 31.688333
CVE 110.34816
CZK 24.311169
DJF 212.515477
DKK 7.466943
DOP 75.116609
DZD 154.547848
EGP 55.98635
ERN 17.936793
ETB 185.990966
FJD 2.624154
FKP 0.867664
GBP 0.866562
GEL 3.222681
GGP 0.867664
GHS 13.061844
GIP 0.867664
GMD 87.292383
GNF 10491.906897
GTQ 9.173914
GYD 250.138509
HKD 9.333768
HNL 31.552779
HRK 7.535726
HTG 156.718106
HUF 380.793919
IDR 20077.249741
ILS 3.699996
IMP 0.867664
INR 109.878519
IQD 1566.280378
IRR 50372.492465
ISK 145.00113
JEP 0.867664
JMD 187.60138
JOD 0.847828
JPY 182.882941
KES 154.2563
KGS 104.572042
KHR 4808.623869
KMF 492.664252
KPW 1076.287842
KRW 1714.135323
KWD 0.366425
KYD 0.996351
KZT 600.612633
LAK 25718.381853
LBP 107067.187834
LKR 369.918778
LRD 221.18669
LSL 18.864417
LTL 3.530846
LVL 0.723319
LYD 7.51066
MAD 10.82726
MDL 20.110155
MGA 5344.027359
MKD 61.830948
MMK 2511.644633
MNT 4265.240494
MOP 9.612344
MRU 47.692942
MUR 53.990114
MVR 18.486994
MWK 2073.162374
MXN 20.62846
MYR 4.696452
MZN 76.243574
NAD 18.864417
NGN 1660.038615
NIO 44.003162
NOK 11.427375
NPR 176.006642
NZD 1.971959
OMR 0.45974
PAB 1.195601
PEN 3.998413
PGK 5.195916
PHP 70.549589
PKR 334.443043
PLN 4.207314
PYG 8023.046318
QAR 4.358485
RON 5.098113
RSD 117.393954
RUB 89.984025
RWF 1744.414623
SAR 4.485017
SBD 9.659173
SCR 16.575561
SDG 719.266256
SEK 10.540765
SGD 1.512418
SHP 0.897149
SLE 29.055949
SLL 25075.037148
SOS 682.114054
SRD 45.444057
STD 24750.35937
STN 24.518478
SVC 10.461884
SYP 13224.88667
SZL 18.858212
THB 37.434099
TJS 11.167016
TMT 4.185252
TND 3.42398
TOP 2.879166
TRY 51.908359
TTD 8.115116
TWD 37.536328
TZS 3067.191445
UAH 51.169262
UGX 4253.205295
USD 1.195786
UYU 45.244097
UZS 14548.964371
VES 428.660821
VND 31090.440337
VUV 142.978985
WST 3.248725
XAF 656.451714
XAG 0.010348
XAU 0.000223
XCD 3.231672
XCG 2.154824
XDR 0.815555
XOF 656.451714
XPF 119.331742
YER 285.072955
ZAR 18.876633
ZMK 10763.513161
ZMW 23.642818
ZWL 385.042658
  • SCS

    0.0200

    16.14

    +0.12%

  • CMSC

    0.0100

    23.71

    +0.04%

  • BCC

    -1.4300

    79.42

    -1.8%

  • GSK

    0.7400

    50.84

    +1.46%

  • JRI

    0.0150

    13.005

    +0.12%

  • BCE

    0.1850

    25.455

    +0.73%

  • NGG

    -0.2100

    84.47

    -0.25%

  • CMSD

    0.0292

    24.08

    +0.12%

  • RIO

    0.8200

    94.19

    +0.87%

  • AZN

    -0.3000

    92.92

    -0.32%

  • BTI

    0.0050

    60.165

    +0.01%

  • RYCEF

    -0.1700

    16.43

    -1.03%

  • RBGPF

    0.0000

    82.4

    0%

  • RELX

    -1.4930

    35.887

    -4.16%

  • VOD

    0.0150

    14.585

    +0.1%

  • BP

    0.2650

    37.965

    +0.7%

Webb telescope spots its first star -- and takes a selfie
Webb telescope spots its first star -- and takes a selfie

Webb telescope spots its first star -- and takes a selfie

Star light, star bright, the James Webb Space Telescope has seen its first star (though it wasn't quite tonight) -- and even taken a selfie, NASA announced Friday.

Text size:

The steps are part of the months-long process of aligning the observatory's enormous golden mirror that astronomers hope will begin unraveling the mysteries of the early Universe by this summer.

The first picture sent back of the cosmos is far from stunning: 18 blurry white dots on a black background, all showing the same object: HD 84406 a bright, isolated star in the constellation Ursa Major.

But in fact it represents a major milestone. The 18 dots were captured by the primary mirror's 18 individual segments -- and the image is now the basis for aligning and focusing those hexagonal pieces.

The light bounced off the segments to Webb's secondary mirror, a round object located at the end of long booms, and then to the Near Infrared Camera (NIRCam) instrument -- Webb's main imaging device.

"The entire Webb team is ecstatic at how well the first steps of taking images and aligning the telescope are proceeding," said Marcia Rieke, principal investigator for the NIRCam instrument and regents professor of astronomy, University of Arizona, in a statement.

"We were so happy to see that light make its way into NIRCam."

The image capturing process began on February 2, with Webb pointing at different positions around the predicted location of the star.

Though Webb's initial search covered an area of the sky about equal to the size of the full Moon, the dots were all located near the center portion, meaning the observatory is already relatively well positioned for final alignment.

To aid the process, the team also captured a "selfie" taken not through an externally mounted camera but through a special lens on board NIRCam.

NASA had previously said a selfie wasn't possible, so the news comes as a welcome bonus for space fans.

"I think pretty much the reaction was holy cow," Lee Feinberg, Webb optical telescope element manager, told reporters in a call, explaining that the team wasn't sure it was possible to obtain such an image using starlight alone.

The $10 billion observatory launched from French Guiana on December 25 and is now in an orbit that is aligned with the Earth's around the Sun, one million miles (1.5 million kilometers away) from our planet, in a region of space called the second Lagrange point.

Webb will begin its science mission by summer, which includes using its high resolution instruments to peer back in time 13.5 billion years to the first generation of galaxies that formed after the Big Bang.

Visible and ultraviolet light emitted by the very first luminous objects has been stretched by the Universe's expansion, and arrives today in the form of infrared, which Webb is equipped to detect with unprecedented clarity.

Its mission also includes the study of distant planets, known as exoplanets, to determine their origin, evolution and habitability.

Y.Ishikawa--JT