The Japan Times - All Scientific Mechanisms Verified: Why Asia Can Now Treat Neutrinovoltaics as Hard Physics

EUR -
AED 4.392152
AFN 77.725587
ALL 96.672854
AMD 453.321241
ANG 2.140553
AOA 1096.536528
ARS 1726.354217
AUD 1.702659
AWG 2.15391
AZN 2.033848
BAM 1.957275
BBD 2.408115
BDT 146.100104
BGN 2.008168
BHD 0.450751
BIF 3541.969294
BMD 1.195786
BND 1.51254
BOB 8.261226
BRL 6.227054
BSD 1.195601
BTN 110.003901
BWP 15.59175
BYN 3.377445
BYR 23437.408869
BZD 2.404612
CAD 1.615896
CDF 2678.561483
CHF 0.916074
CLF 0.026
CLP 1026.642284
CNY 8.316274
CNH 8.309949
COP 4352.661647
CRC 591.5458
CUC 1.195786
CUP 31.688333
CVE 110.34816
CZK 24.311169
DJF 212.515477
DKK 7.466943
DOP 75.116609
DZD 154.547848
EGP 55.98635
ERN 17.936793
ETB 185.990966
FJD 2.624154
FKP 0.867664
GBP 0.866562
GEL 3.222681
GGP 0.867664
GHS 13.061844
GIP 0.867664
GMD 87.292383
GNF 10491.906897
GTQ 9.173914
GYD 250.138509
HKD 9.333768
HNL 31.552779
HRK 7.535726
HTG 156.718106
HUF 380.793919
IDR 20077.249741
ILS 3.699996
IMP 0.867664
INR 109.878519
IQD 1566.280378
IRR 50372.492465
ISK 145.00113
JEP 0.867664
JMD 187.60138
JOD 0.847828
JPY 182.882941
KES 154.2563
KGS 104.572042
KHR 4808.623869
KMF 492.664252
KPW 1076.287842
KRW 1714.135323
KWD 0.366425
KYD 0.996351
KZT 600.612633
LAK 25718.381853
LBP 107067.187834
LKR 369.918778
LRD 221.18669
LSL 18.864417
LTL 3.530846
LVL 0.723319
LYD 7.51066
MAD 10.82726
MDL 20.110155
MGA 5344.027359
MKD 61.830948
MMK 2511.644633
MNT 4265.240494
MOP 9.612344
MRU 47.692942
MUR 53.990114
MVR 18.486994
MWK 2073.162374
MXN 20.62846
MYR 4.696452
MZN 76.243574
NAD 18.864417
NGN 1660.038615
NIO 44.003162
NOK 11.427375
NPR 176.006642
NZD 1.971959
OMR 0.45974
PAB 1.195601
PEN 3.998413
PGK 5.195916
PHP 70.549589
PKR 334.443043
PLN 4.207314
PYG 8023.046318
QAR 4.358485
RON 5.098113
RSD 117.393954
RUB 89.984025
RWF 1744.414623
SAR 4.485017
SBD 9.659173
SCR 16.575561
SDG 719.266256
SEK 10.540765
SGD 1.512418
SHP 0.897149
SLE 29.055949
SLL 25075.037148
SOS 682.114054
SRD 45.444057
STD 24750.35937
STN 24.518478
SVC 10.461884
SYP 13224.88667
SZL 18.858212
THB 37.434099
TJS 11.167016
TMT 4.185252
TND 3.42398
TOP 2.879166
TRY 51.908359
TTD 8.115116
TWD 37.536328
TZS 3067.191445
UAH 51.169262
UGX 4253.205295
USD 1.195786
UYU 45.244097
UZS 14548.964371
VES 428.660821
VND 31090.440337
VUV 142.978985
WST 3.248725
XAF 656.451714
XAG 0.010348
XAU 0.000223
XCD 3.231672
XCG 2.154824
XDR 0.815555
XOF 656.451714
XPF 119.331742
YER 285.072955
ZAR 18.876633
ZMK 10763.513161
ZMW 23.642818
ZWL 385.042658
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    82.4

    0%

  • BCC

    -1.3300

    79.52

    -1.67%

  • CMSD

    0.0292

    24.08

    +0.12%

  • CMSC

    -0.0050

    23.695

    -0.02%

  • GSK

    0.7800

    50.88

    +1.53%

  • BTI

    0.0400

    60.2

    +0.07%

  • BCE

    0.2650

    25.535

    +1.04%

  • RIO

    1.1600

    94.53

    +1.23%

  • RYCEF

    -0.1700

    16.43

    -1.03%

  • RELX

    -1.2950

    36.085

    -3.59%

  • JRI

    -0.0200

    12.97

    -0.15%

  • VOD

    0.1050

    14.675

    +0.72%

  • AZN

    -0.1100

    93.11

    -0.12%

  • NGG

    0.1250

    84.805

    +0.15%

  • BP

    0.3150

    38.015

    +0.83%

All Scientific Mechanisms Verified: Why Asia Can Now Treat Neutrinovoltaics as Hard Physics
All Scientific Mechanisms Verified: Why Asia Can Now Treat Neutrinovoltaics as Hard Physics

All Scientific Mechanisms Verified: Why Asia Can Now Treat Neutrinovoltaics as Hard Physics

The scientific chain behind Neutrino® Energy Group's neutrinovoltaic technology, once debated, now stands independently confirmed.

Text size:

BERLIN, DE / ACCESS Newswire / December 8, 2025 / Record heatwaves across East and Southeast Asia, unprecedented electricity loads in China, and the rapid expansion of AI-driven data centres have placed sustained pressure on the region's power systems. Governments now evaluate new energy technologies not by promise but by verifiable physics. Concepts must be experimentally proven, peer reviewed, and institutionally validated before entering national strategies.

Neutrino® Energy Group

In this context, the scientific foundation of Neutrino® Energy Group's neutrinovoltaic technology has reached an important threshold. The physical mechanisms required for neutrinovoltaic energy conversion, once debated, are now independently confirmed through mainstream research in particle physics, astrophysics, and condensed matter science. The strategic question for Asia has therefore shifted from feasibility to application.

Independent Experiments, One Convergent Outcome

Crucially, this validation did not arise from a coordinated program or a single laboratory. Results emerged from neutrino scattering experiments, underground observatories, astrophysical arrays, and graphene research facilities operating independently and for unrelated objectives. Together, these findings confirm every element required for neutrinovoltaics: particle momentum transfer, finite particle mass, environmental flux stability, material response, and rectification efficiency.

The Schubart Master Equation

At the core of neutrinovoltaic science lies the Schubart Master Equation,
P(t) = η ∫V Φ_eff(r,t) σ_eff(E) dV,

formulated by mathematician Holger Thorsten Schubart. It defines power output through three requirements: a measurable environmental particle field, interaction via momentum exchange, and engineered materials capable of rectifying that excitation into directional electrical current. All three conditions are now experimentally verified by independent institutions.

Momentum Transfer and Neutrino Properties

Momentum transfer was experimentally confirmed through coherent elastic neutrino-nucleus scattering (CEνNS), first observed by the COHERENT Collaboration at Oak Ridge National Laboratory and later reinforced by experiments such as CONUS+. These results demonstrate measurable momentum exchange between neutrinos and matter, enabling phonon excitation in structured materials.

Equally essential is neutrino mass. Observations of neutrino oscillations by Super-Kamiokande in Japan and the Sudbury Neutrino Observatory in Canada conclusively established finite neutrino mass, a discovery recognised by the Nobel Prize in Physics. This finding provides the physical basis for energy exchange between neutrinos and engineered materials.

JUNO and Quantified Environmental Flux

Precise characterization of the environmental particle field is provided by the Jiangmen Underground Neutrino Observatory (JUNO) in Guangdong. JUNO delivers some of the most accurate measurements of reactor and solar neutrino fluxes worldwide, transforming the environmental field term in the Master Equation from approximation to quantified input. Asia now hosts one of the world's most precise neutrino flux datasets.

Material Science: σ_eff and η

Independent condensed matter research confirms the material response term σ_eff. Studies on multi-layer graphene and doped silicon structures show phonon amplification, directional charge separation through controlled doping, and nonlinear rectification in stacked graphene-Si:n architectures. These behaviours are well documented in mainstream materials science literature.

Asymmetric nanojunction research further establishes η, the efficiency term. Structural asymmetry enables the rectification of ultra-low-level environmental excitations into a directional electrical current, a repeatedly measured effect in nanoelectronics research.

Composite Environmental Field and Thermodynamics

Astroparticle observatories such as IceCube and KM3NeT have mapped stable cosmic muon flux, contributing to the composite environmental field alongside neutrinos, electrons, photons, electromagnetic fields, and thermal phonons. This multi-source field is measured, persistent, and non-hypothetical.

Thermodynamic consistency is addressed through nonlinear open-system physics. Neutrinovoltaic structures operate as open systems, absorbing and rectifying environmental fluctuations without violating conservation laws or entropy principles.

Engineering Stability and Strategic Implications

The reproducibility of twelve-layer graphene-Si:n architectures across climatic conditions relevant to Asia underpins the engineering feasibility of systems such as the Neutrino Power Cube, Neutrino Life Cube, the Pi mobility ecosystem, and the NET8 and Pi-12 coordination platforms. The technology relies on deterministic material behaviour rather than stochastic effects.

For Asia, the implication is clear. Every physical mechanism required for neutrinovoltaics is now independently established in peer-reviewed science, much of it generated by facilities located within the region itself. The debate can therefore move from theoretical feasibility to technical evaluation and deployment.

Holger Thorsten Schubart expressed the transition in measured terms: "We have not changed physics. We have only understood what was always there."

Contact Information

Holger Thorsten Schubart
CEO and member of the Scientific Advisory Board
[email protected]
+493020924013

SOURCE: Neutrino Energy Group



View the original press release on ACCESS Newswire

M.Ito--JT