The Japan Times - Webb begins hunt for the first stars and habitable worlds

EUR -
AED 4.375983
AFN 78.643058
ALL 96.58421
AMD 452.507034
ANG 2.132979
AOA 1092.655973
ARS 1720.646167
AUD 1.702052
AWG 2.144799
AZN 1.994202
BAM 1.955357
BBD 2.405937
BDT 145.956951
BGN 2.001062
BHD 0.449262
BIF 3538.973885
BMD 1.191555
BND 1.511261
BOB 8.253339
BRL 6.188218
BSD 1.194505
BTN 109.898422
BWP 15.577453
BYN 3.374405
BYR 23354.481892
BZD 2.402437
CAD 1.611775
CDF 2689.940429
CHF 0.916201
CLF 0.025922
CLP 1023.546213
CNY 8.279404
CNH 8.277977
COP 4352.75114
CRC 591.052975
CUC 1.191555
CUP 31.576213
CVE 110.242351
CZK 24.327088
DJF 212.712547
DKK 7.467602
DOP 75.054029
DZD 154.184086
EGP 55.796005
ERN 17.873328
ETB 185.836015
FJD 2.618321
FKP 0.864594
GBP 0.866273
GEL 3.211194
GGP 0.864594
GHS 13.049374
GIP 0.864594
GMD 87.582685
GNF 10483.121962
GTQ 9.165117
GYD 249.899707
HKD 9.302168
HNL 31.52583
HRK 7.534919
HTG 156.585571
HUF 380.916966
IDR 19994.296232
ILS 3.686904
IMP 0.864594
INR 109.500169
IQD 1564.726005
IRR 50194.262927
ISK 144.999784
JEP 0.864594
JMD 187.430931
JOD 0.844788
JPY 183.319637
KES 154.03242
KGS 104.201491
KHR 4794.218086
KMF 490.920784
KPW 1072.479687
KRW 1714.177233
KWD 0.36539
KYD 0.995362
KZT 600.016586
LAK 25694.260282
LBP 106970.807356
LKR 369.567175
LRD 220.974601
LSL 18.847198
LTL 3.518353
LVL 0.720759
LYD 7.503679
MAD 10.816923
MDL 20.092052
MGA 5339.171934
MKD 61.662346
MMK 2502.757853
MNT 4250.149086
MOP 9.602805
MRU 47.653209
MUR 53.798635
MVR 18.421741
MWK 2071.27876
MXN 20.575658
MYR 4.697707
MZN 75.973614
NAD 18.845696
NGN 1659.098076
NIO 43.966502
NOK 11.444286
NPR 175.860008
NZD 1.96952
OMR 0.458172
PAB 1.19446
PEN 3.994496
PGK 5.191565
PHP 70.223095
PKR 334.136374
PLN 4.207078
PYG 8015.790446
QAR 4.354305
RON 5.096879
RSD 117.408628
RUB 89.657039
RWF 1742.807764
SAR 4.469232
SBD 9.624997
SCR 16.807192
SDG 716.736374
SEK 10.552627
SGD 1.509975
SHP 0.893975
SLE 28.955703
SLL 24986.315863
SOS 681.494305
SRD 45.283266
STD 24662.78687
STN 24.497948
SVC 10.451502
SYP 13178.09396
SZL 18.84092
THB 37.380873
TJS 11.156308
TMT 4.170443
TND 3.420697
TOP 2.868979
TRY 51.793571
TTD 8.107198
TWD 37.415189
TZS 3056.339186
UAH 51.122771
UGX 4249.144856
USD 1.191555
UYU 45.200714
UZS 14534.526007
VES 427.14412
VND 30897.026299
VUV 142.473093
WST 3.23723
XAF 655.79475
XAG 0.010764
XAU 0.000229
XCD 3.220237
XCG 2.152685
XDR 0.815673
XOF 655.841524
XPF 119.331742
YER 284.066617
ZAR 18.867019
ZMK 10725.425812
ZMW 23.621436
ZWL 383.680288
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • CMSD

    0.0392

    24.09

    +0.16%

  • NGG

    0.3900

    85.07

    +0.46%

  • CMSC

    0.0100

    23.71

    +0.04%

  • BTI

    0.0600

    60.22

    +0.1%

  • AZN

    -0.6300

    92.59

    -0.68%

  • GSK

    0.5600

    50.66

    +1.11%

  • BP

    0.3400

    38.04

    +0.89%

  • BCE

    0.2200

    25.49

    +0.86%

  • RIO

    1.7600

    95.13

    +1.85%

  • RELX

    -1.2100

    36.17

    -3.35%

  • RYCEF

    -0.0700

    16.88

    -0.41%

  • BCC

    -0.5500

    80.3

    -0.68%

  • JRI

    -0.0500

    12.94

    -0.39%

  • VOD

    0.1400

    14.71

    +0.95%

Webb begins hunt for the first stars and habitable worlds
Webb begins hunt for the first stars and habitable worlds / Photo: Jonathan WALTER - AFP

Webb begins hunt for the first stars and habitable worlds

The first stunning images from the James Webb Space Telescope were revealed this week, but its journey of cosmic discovery has only just begun.

Text size:

Here is a look at two early projects that will take advantage of the orbiting observatory's powerful instruments.

- The first stars and galaxies -

One of the great promises of the telescope is its ability to study the earliest phase of cosmic history, shortly after the Big Bang 13.8 billion years ago.

The more distant objects are from us, the longer it takes for their light to reach us, and so to gaze back into the distant universe is to look back in the deep past.

"We're going to look back into that earliest time to see the first galaxies that formed in the history of the universe," explained Space Telescope Science Institute astronomer Dan Coe, who specializes in the early universe.

Astronomers have so far gone back 97 percent of the way back to the Big Bang, but "we just see these tiny red specks when we look at these galaxies that are so far away."

"With Webb, we'll finally be able to see inside these galaxies and see what they're made of."

While today's galaxies are shaped like spirals or ellipticals, the earliest building blocks were "clumpy and irregular," and Webb should reveal older redder stars in them, more like our Sun, that were invisible to the Hubble Space Telescope.

Coe has two Webb projects coming up -- observing one of the most distant galaxies known, MACS0647-JD, which he found in 2013, and Earendel, the most distant star ever detected, which was found in March of this year.

While the public has been enticed by Webb's stunning pictures, which are shot in infrared because light from the far cosmos has stretched into these wavelengths as the universe expanded, scientists are equally keen on spectroscopy.

Analyzing the light spectrum of an object reveals its properties, including temperature, mass, and chemical composition -- effectively, forensic science for astronomy.

Science doesn't yet know what the earliest stars, which probably started forming 100 million years after the Big Bang, will look like.

"We might see things that are very different," said Coe -- so-called "Population III" stars that are theorized to have been much more massive than our own Sun, and "pristine," meaning they were made up solely of hydrogen and helium.

These eventually exploded in supernovae, contributing to the cosmic chemical enrichment that created the stars and planets we see today.

Some are doubtful these pristine Population III stars will ever be found -- but that won't stop the astronomical community from trying.

- Anyone out there? -

Astronomers won time on Webb based on a competitive selection process, open to all regardless of how advanced they are in their careers.

Olivia Lim, a doctoral student at the University of Montreal, is only 25 years old. "I was not even born when people started talking about this telescope," she told AFP.

Her goal: to observe the roughly Earth-sized rocky planets revolving around a star named Trappist-1. They are so close to each other that from the surface of one, you could see the others appearing clearly in the sky.

"The Trappist-1 system is unique," explains Lim. "Almost all of the conditions there are favorable for the search for life outside our solar system."

In addition, three of Trappist-1's seven planets are in the Goldilocks "habitable zone," neither too close nor too far from their star, permitting the right temperatures for liquid water to exist on their surface.

The system is "only" 39 light year away -- and we can see the planets transit in front of their star.

This makes it possible to observe the drop in luminosity that crossing the star produces, and use spectroscopy to infer planetary properties.

It's not yet known if these planets have an atmosphere, but that's what Lim is looking to find out. If so, the light passing through these atmospheres will be "filtered" through the molecules it contains, leaving signatures for Webb.

The jackpot for her would be to detect the presence of water vapor, carbon dioxide and ozone.

Trappist-1 is such a prime target that several other science teams have also been granted time to observe them.

Finding traces of life there, if they exist, will still take time, according to Lim. But "everything we're doing this year are really important steps to get to that ultimate goal."

Y.Hara--JT