The Japan Times - How to develop perfect battery systems for complex mobile solutions

EUR -
AED 4.277424
AFN 76.282379
ALL 96.389901
AMD 444.278751
ANG 2.0846
AOA 1067.888653
ARS 1666.882107
AUD 1.752778
AWG 2.096182
AZN 1.984351
BAM 1.954928
BBD 2.344654
BDT 142.403852
BGN 1.956425
BHD 0.438198
BIF 3455.206503
BMD 1.164546
BND 1.508021
BOB 8.044377
BRL 6.334667
BSD 1.164081
BTN 104.66486
BWP 15.466034
BYN 3.346807
BYR 22825.091832
BZD 2.341246
CAD 1.610276
CDF 2599.265981
CHF 0.936525
CLF 0.027366
CLP 1073.571668
CNY 8.233458
CNH 8.232219
COP 4463.819362
CRC 568.64633
CUC 1.164546
CUP 30.860456
CVE 110.752812
CZK 24.203336
DJF 206.963485
DKK 7.470448
DOP 74.822506
DZD 151.068444
EGP 55.295038
ERN 17.468183
ETB 180.679691
FJD 2.632397
FKP 0.872083
GBP 0.872973
GEL 3.138497
GGP 0.872083
GHS 13.3345
GIP 0.872083
GMD 85.012236
GNF 10116.993527
GTQ 8.917022
GYD 243.550308
HKD 9.065929
HNL 30.604708
HRK 7.535429
HTG 152.392019
HUF 381.994667
IDR 19435.740377
ILS 3.768132
IMP 0.872083
INR 104.760771
IQD 1525.554607
IRR 49041.926882
ISK 149.038983
JEP 0.872083
JMD 186.32688
JOD 0.825709
JPY 180.935883
KES 150.58016
KGS 101.839952
KHR 4664.005142
KMF 491.43861
KPW 1048.083022
KRW 1716.311573
KWD 0.357481
KYD 0.970163
KZT 588.714849
LAK 25258.992337
LBP 104285.050079
LKR 359.069821
LRD 206.012492
LSL 19.73949
LTL 3.438601
LVL 0.704422
LYD 6.347216
MAD 10.756329
MDL 19.807079
MGA 5225.31607
MKD 61.612515
MMK 2445.475195
MNT 4130.063083
MOP 9.335036
MRU 46.419225
MUR 53.689904
MVR 17.938355
MWK 2022.815938
MXN 21.164687
MYR 4.787492
MZN 74.426542
NAD 19.739485
NGN 1688.68458
NIO 42.826206
NOK 11.767853
NPR 167.464295
NZD 2.015483
OMR 0.446978
PAB 1.164176
PEN 4.096293
PGK 4.876539
PHP 68.66747
PKR 326.50949
PLN 4.229804
PYG 8006.428369
QAR 4.240169
RON 5.092096
RSD 117.610988
RUB 88.93302
RWF 1689.755523
SAR 4.37074
SBD 9.584899
SCR 15.748939
SDG 700.4784
SEK 10.946786
SGD 1.508557
SHP 0.873711
SLE 27.603998
SLL 24419.93473
SOS 665.542019
SRD 44.985272
STD 24103.740676
STN 24.921274
SVC 10.184839
SYP 12877.828498
SZL 19.739476
THB 37.119932
TJS 10.680789
TMT 4.087555
TND 3.436865
TOP 2.803946
TRY 49.523506
TTD 7.89148
TWD 36.437508
TZS 2835.668687
UAH 48.86364
UGX 4118.162907
USD 1.164546
UYU 45.529689
UZS 13980.369136
VES 296.437311
VND 30697.419423
VUV 142.156196
WST 3.249257
XAF 655.661697
XAG 0.019993
XAU 0.000278
XCD 3.147243
XCG 2.098055
XDR 0.815205
XOF 655.061029
XPF 119.331742
YER 277.802752
ZAR 19.711451
ZMK 10482.311144
ZMW 26.913878
ZWL 374.983176
  • BCC

    -1.2100

    73.05

    -1.66%

  • SCS

    -0.0900

    16.14

    -0.56%

  • AZN

    0.1500

    90.18

    +0.17%

  • JRI

    0.0400

    13.79

    +0.29%

  • CMSD

    -0.0700

    23.25

    -0.3%

  • NGG

    -0.5000

    75.41

    -0.66%

  • RBGPF

    0.0000

    78.35

    0%

  • CMSC

    -0.0500

    23.43

    -0.21%

  • GSK

    -0.1600

    48.41

    -0.33%

  • BCE

    0.3300

    23.55

    +1.4%

  • RIO

    -0.6700

    73.06

    -0.92%

  • RELX

    -0.2200

    40.32

    -0.55%

  • BTI

    -1.0300

    57.01

    -1.81%

  • VOD

    -0.1630

    12.47

    -1.31%

  • RYCEF

    -0.0500

    14.62

    -0.34%

  • BP

    -1.4000

    35.83

    -3.91%

How to develop perfect battery systems for complex mobile solutions
How to develop perfect battery systems for complex mobile solutions / Photo: © The modern ANSMANN AG battery pack manufacturing and testing site in Germany (Image source: @Ansmann AG)

How to develop perfect battery systems for complex mobile solutions

Using a 3-step-strategy ANSMANN defines the perfect battery pack and charger for each mobile device

Text size:

(Assamstadt/Bromma/Oslo/Lieusaint, 19-08-2025) Sometimes they combine supercaps with lithium hybrid storage systems; other times they search for the best battery cell for a specific task profile by using their BatteryLab and AI-systems. As mentioned in several publications before: Whatever it takes, Ansmann Group's battery system experts take a broad 3-step-approach, when it comes to finding the optimized battery and charging system for an application - like for example Driverless Transportation Systems (DTS) and Automated Guided Vehicle Systems (AGVs) or Autonomous Mobile Robots (AMRs).

++ Hybrid energy storage of supercaps and LiIon-Technology

How does it work to create a perfect customized battery pack? Step one: dare to think out of the box. A new hybrid storage system for AGVs and AMR , designed by ANSMANN and the IFL Karlsruhe (Institut für Fördertechnik und Logistiksysteme of KIT-Karlsruhe), p.ex. combines the best of two energy storage worlds: supercap capacitors and lithium-ion (LiIon) battery cells. This creates a highly efficient energy storage system, specifically for the needs of a logistic system with AGVs and AMRs. When the so-called double-layer capacitors and battery cells are skillfully combined, the new solution is 50 percent lighter, permanently available and has three times the service life of previous battery applications in AGVs.

The reason for this is, that supercaps can be quickly charged to 95 percent within 30 seconds at precisely located decentralised charging points. The vehicle is then ready for its next tour and can successively charge the conventional battery module. This supplies the vehicle with energy for longer distances, which cannot be covered by the supercap alone. The result: a perfect, extremely energy efficient hybrid energy storage system for mobile logistic solutions - which is almost half the size with up to 80 percent less battery cells and requires less capacity for identical applications than normal LiIon systems would need.

++ Cell preselection in the new Ansmann battery laboratory

Second, it is crucial for each mobile solution, to identify the best cells to be used in its battery pack. Therefor hundreds of different cells - over 300 round cell types, 60 prismatic and 40 others yet - are recorded in the ANSMANN cell database. For more than two years now, a team of ANSMANN experts is systematically searching for new cell types worldwide and tests them for unusual parameters.

The reason for the company's decision to invest in and systematically expand cell measurement and benchmarking in the form of a "battery laboratory" is clear: The number of cell sizes is constantly increasing. Same time, the number of cell chemistries and cell manufacturers is increasing. However, the cell manufacturers' data sheets often only reveal a limited part of the truth and their data was collected only under ideal conditions. So it doesn't tell anything for example about very important selection criteria like the behavior of a cell in its aging process.

Dark side: The use of unsuitable cells can have a significant negative impact on the performance and service life of a battery pack and the mobile solution it is used in. Whatever the critical selection criteria had been, be it current output capability, ability to push the systems acceleration or other: the performance of the battery pack is impaired. Through careful, preventive cell selection, complaining reasons are minimized and the warranty period for the unaffected runtime of the battery pack can be extended to reduce costs.

++ Third step is the use of a self-developed Artificial Intelligence (AI) Tool

And even more - step three: For deciding about the best cell forms for the specific solution and speeding up time-to-market of its customers, ANSMANN Industrial Solutions has developed it's own AI-tool, that helps to optimize the pack designs and formats more quickly.

For more than three decades, ANSMANN has been at the forefront as the world's leading expert in battery, accumulator, charging, drive and lighting technology. The more than 400 employees support their industrial customers in the complete development process of their mobile electronic devices and vehicles: from consulting through development, testing and distribution to cell and battery system recycling. More information: ANSMANN Industrial Solutions



Company description
The Ansmann Group is known in many European countries for more than 30 years for its particularly safe, technically pioneering and yet cost effective solutions for private and industrial applications. Those include medical equipment - as ANSMANN production is certified to the EN ISO 13485 medical standard, battery components for e-wheelchairs, e-bikes, battery-powered forestry as well as gardening powertools and various kinds of small e-vehicles and types of equipment.
The company operates a production facility and central logistics centre at its headquarters in Assamstadt and offices in France, Sweden, Norway and the UK. The ANSMANN UN test centre and a BatteryLab and test facility for cells and battery systems can run all necessary tests and checks to ensure the transportability, safety and recyclability of battery packs and solutions.

Company-Contact
Ansmann AG
Christopher Vogt
Industriestr. 10
97959 Assamstadt
+49 6294 4204-0
https://www.ansmann.de


Press
Comm:Motions - Text & PR
Miriam Leunissen
Hechtseestr 16
83022 Rosenheim
+49 174 3005749
https://www.comm-motions.com

K.Hashimoto--JT