The Japan Times - 'Mystery' boson finding contradicts understanding of universe

EUR -
AED 4.392152
AFN 77.725587
ALL 96.672854
AMD 453.321241
ANG 2.140553
AOA 1096.536528
ARS 1726.354217
AUD 1.702659
AWG 2.15391
AZN 2.033848
BAM 1.957275
BBD 2.408115
BDT 146.100104
BGN 2.008168
BHD 0.450751
BIF 3541.969294
BMD 1.195786
BND 1.51254
BOB 8.261226
BRL 6.227054
BSD 1.195601
BTN 110.003901
BWP 15.59175
BYN 3.377445
BYR 23437.408869
BZD 2.404612
CAD 1.615896
CDF 2678.561483
CHF 0.916074
CLF 0.026
CLP 1026.642284
CNY 8.316274
CNH 8.309949
COP 4352.661647
CRC 591.5458
CUC 1.195786
CUP 31.688333
CVE 110.34816
CZK 24.311169
DJF 212.515477
DKK 7.466943
DOP 75.116609
DZD 154.547848
EGP 55.98635
ERN 17.936793
ETB 185.990966
FJD 2.624154
FKP 0.867664
GBP 0.866562
GEL 3.222681
GGP 0.867664
GHS 13.061844
GIP 0.867664
GMD 87.292383
GNF 10491.906897
GTQ 9.173914
GYD 250.138509
HKD 9.333768
HNL 31.552779
HRK 7.535726
HTG 156.718106
HUF 380.793919
IDR 20077.249741
ILS 3.699996
IMP 0.867664
INR 109.878519
IQD 1566.280378
IRR 50372.492465
ISK 145.00113
JEP 0.867664
JMD 187.60138
JOD 0.847828
JPY 182.882941
KES 154.2563
KGS 104.572042
KHR 4808.623869
KMF 492.664252
KPW 1076.287842
KRW 1714.135323
KWD 0.366425
KYD 0.996351
KZT 600.612633
LAK 25718.381853
LBP 107067.187834
LKR 369.918778
LRD 221.18669
LSL 18.864417
LTL 3.530846
LVL 0.723319
LYD 7.51066
MAD 10.82726
MDL 20.110155
MGA 5344.027359
MKD 61.830948
MMK 2511.644633
MNT 4265.240494
MOP 9.612344
MRU 47.692942
MUR 53.990114
MVR 18.486994
MWK 2073.162374
MXN 20.62846
MYR 4.696452
MZN 76.243574
NAD 18.864417
NGN 1660.038615
NIO 44.003162
NOK 11.427375
NPR 176.006642
NZD 1.971959
OMR 0.45974
PAB 1.195601
PEN 3.998413
PGK 5.195916
PHP 70.549589
PKR 334.443043
PLN 4.207314
PYG 8023.046318
QAR 4.358485
RON 5.098113
RSD 117.393954
RUB 89.984025
RWF 1744.414623
SAR 4.485017
SBD 9.659173
SCR 16.575561
SDG 719.266256
SEK 10.540765
SGD 1.512418
SHP 0.897149
SLE 29.055949
SLL 25075.037148
SOS 682.114054
SRD 45.444057
STD 24750.35937
STN 24.518478
SVC 10.461884
SYP 13224.88667
SZL 18.858212
THB 37.434099
TJS 11.167016
TMT 4.185252
TND 3.42398
TOP 2.879166
TRY 51.908359
TTD 8.115116
TWD 37.536328
TZS 3067.191445
UAH 51.169262
UGX 4253.205295
USD 1.195786
UYU 45.244097
UZS 14548.964371
VES 428.660821
VND 31090.440337
VUV 142.978985
WST 3.248725
XAF 656.451714
XAG 0.010348
XAU 0.000223
XCD 3.231672
XCG 2.154824
XDR 0.815555
XOF 656.451714
XPF 119.331742
YER 285.072955
ZAR 18.876633
ZMK 10763.513161
ZMW 23.642818
ZWL 385.042658
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    82.4

    0%

  • BCC

    -1.3300

    79.52

    -1.67%

  • CMSD

    0.0292

    24.08

    +0.12%

  • CMSC

    -0.0050

    23.695

    -0.02%

  • GSK

    0.7800

    50.88

    +1.53%

  • BTI

    0.0400

    60.2

    +0.07%

  • BCE

    0.2650

    25.535

    +1.04%

  • RIO

    1.1600

    94.53

    +1.23%

  • RYCEF

    -0.1700

    16.43

    -1.03%

  • RELX

    -1.2950

    36.085

    -3.59%

  • JRI

    -0.0200

    12.97

    -0.15%

  • VOD

    0.1050

    14.675

    +0.72%

  • AZN

    -0.1100

    93.11

    -0.12%

  • NGG

    0.1250

    84.805

    +0.15%

  • BP

    0.3150

    38.015

    +0.83%

'Mystery' boson finding contradicts understanding of universe
'Mystery' boson finding contradicts understanding of universe

'Mystery' boson finding contradicts understanding of universe

After a decade of meticulous measurements, scientists announced Thursday that a fundamental particle -- the W boson -- has a significantly greater mass than theorised, shaking the foundations of our understanding of how the universe works.

Text size:

Those foundations are grounded by the Standard Model of particle physics, which is the best theory scientists have to describe the most basic building blocks of the universe, and what forces govern them.

The W boson governs what is called the weak force, one of the four fundamental forces of nature, and therefore a pillar of the Standard Model.

However new research published in the Science journal said that the most precise measurement ever made of the W Boson directly contradicts the model's prediction.

Ashutosh Kotwal, a physicist at Duke University who led the study, told AFP that the result had taken more than 400 scientists over 10 years to scrutinise four million W boson candidates out of a "dataset of around 450 trillion collisions".

These collisions -- made by smashing particles together at mind-bending speeds to study them -- were done by the Tevatron collider in the US state of Illinois.

It was the world's highest-energy particle accelerator until 2009, when it was supplanted by the Large Hadron Collider near Geneva, which famously observed the Higgs boson a few years later.

The Tevatron stopped running in 2011, but the scientists at the Collider Detector at Fermilab (CDF) have been crunching numbers ever since.

- 'Fissures' in the model -

Harry Cliff, a particle physicist at Cambridge University who works at the Large Hadron Collider, said the Standard Model is "probably the most successful scientific theory that has ever been written down".

"It can make fantastically precise predictions," he said. But if those predictions are proved wrong, the model cannot merely be tweaked.

"It's like a house of cards, you pull on one bit of it too much, the whole thing comes crashing down," Cliff told AFP.

The standard model is not without its problems.

For example, it doesn't account for dark matter, which along with dark energy is thought to make up 95 percent of the universe. It also says that the universe should not have existed in the first place, because the Big Bang ought to have annihilated itself.

On top of that, "a few fissures have recently been exposed" in the model, physicists said in a companion Science article.

"In this framework of clues that there are missing pieces to the standard model, we have contributed one more, very interesting, and somewhat large clue," Kotwal said.

Jan Stark, physicist and director of research at the French CNRS institute, said "this is either a major discovery or a problem in the analysis of data," predicting "quite heated discussions in the years to come".

He told AFP that "extraordinary claims require extraordinary evidence".

- 'Huge deal' -

The CDF scientists said they had determined the W boson's mass with a precision of 0.01 percent -- twice as precise as previous efforts.

They compared it to measuring the weight of a 350-kilogram (800-pound) gorilla to within 40 grams (1.5 ounces).

They found the boson was different than the standard model's prediction by seven standard deviations, which are also called sigma.

Cliff said that if you were flipping a coin, "the chances of getting a five sigma result by dumb luck is one in three and a half million".

"If this is real, and not some systematic bias or misunderstanding of how to do the calculations, then it's a huge deal because it would mean there's a new fundamental ingredient to our universe that we haven't discovered before," he said.

"But if you're going to say something as big as we've broken the standard model of particle physics, and there's new particles out there to discover, to convince people of that you probably need more than one measurement from more than one experiment."

CDF co-spokesperson David Toback said that "it's now up to the theoretical physics community and other experiments to follow up on this and shed light on this mystery".

And after a decade of measurements, Kotwal isn't done yet.

"We follow the clues and leave no stone unturned, so we'll figure out what this means."

S.Fujimoto--JT