The Japan Times - Big leap in quest to get to bottom of climate ice mystery

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.863571
GBP 0.865754
GEL 3.194674
GGP 0.863571
GHS 12.974143
GIP 0.863571
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.863571
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.863571
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.928941
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.287708
MNT 4228.659246
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.680176
WST 3.213481
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
  • RBGPF

    1.3800

    83.78

    +1.65%

  • SCS

    0.0200

    16.14

    +0.12%

  • BCC

    0.5100

    80.81

    +0.63%

  • JRI

    0.1400

    13.08

    +1.07%

  • BCE

    0.3700

    25.86

    +1.43%

  • RELX

    -0.3700

    35.8

    -1.03%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • CMSC

    0.0500

    23.76

    +0.21%

  • RIO

    -4.1000

    91.03

    -4.5%

  • RYCEF

    -0.4300

    16

    -2.69%

  • GSK

    0.9400

    51.6

    +1.82%

  • BTI

    0.4600

    60.68

    +0.76%

  • VOD

    -0.0600

    14.65

    -0.41%

  • AZN

    0.1800

    92.77

    +0.19%

  • BP

    -0.1600

    37.88

    -0.42%

  • NGG

    0.2000

    85.27

    +0.23%

Big leap in quest to get to bottom of climate ice mystery
Big leap in quest to get to bottom of climate ice mystery / Photo: Prakash MATHEMA - AFP

Big leap in quest to get to bottom of climate ice mystery

Stanislav Kutuzov felt the drillhead he was controlling smash into the rock more than 100 metres below him high on a glacier in the Pamir peaks of Tajikistan. The ice core samples it took could help solve one of climate science's great mysteries.

Text size:

"This is the best feeling ever," declared the Russian-born glaciologist in the thin mountain air of Kon Chukurbashi.

Kutuzov is one of a team of 15 scientists which AFP was exclusively able to follow on their historic mission 5,810 metres (19,000 feet) up on a snowy ridge near the Chinese border.

The expedition to recover the deepest ice samples ever extracted from the Pamir, one of the world's highest and least-studied mountain ranges, aims to give scientists access to one of the planet's oldest climate archives.

These layers of ice holding dust, compacted for centuries, perhaps millennia, may be able to tell us about the atmosphere, temperatures and snowfalls deep into the past.

The unspoken hope is that this will be the oldest ice ever extracted from the entire so-called Pamir-Karakoram anomaly zone, the only mountainous region on the planet where glaciers still seem to be resisting global warming.

The expedition in September, funded by the Swiss Polar Institute and the Ice Memory Foundation, was initially planned for the legendary Fedchenko Glacier, but it was too high to be reached by helicopter.

- Humped down the mountain -

So the team of Swiss, Japanese, Russian and Tajik scientists turned to the lower Kon Chukurbashi ice cap -- which ultimately proved to be very fruitful.

The climb had to be done in stages through a rocky moonscape, crossing a sea of spiky ice and then the snow of the domed summit with its staggering views across Central Asia. They then took a week to drill down through the ice to get the two deepest core samples, with the temperature dropping to minus 18C at night.

The team had to bring the core samples -- dozens of cylinders of ice about 50 centimetres (20 inches) long -- to the surface carefully.

They then numbered and packed the samples so they could be carried down the mountain in iceboxes and then transferred via four-wheel-drive vehicles to refrigerated trucks further down the mountain.

"The first 50 metres we did in one day," said Kutuzov, a paleoclimatologist at Ohio State University in the United States.

But at around 70 to 80 metres "we started to experience troubles with the core quality", he told AFP.

Suddenly the ice became more brittle, harder to handle, yet promising at the same time -- perhaps a sign of a period of change, said expedition leader Evan Miles, a glaciologist at the Swiss universities of Fribourg and Zurich.

They had never seen so many dust particles in ice, which slowed down the drilling.

When they got to the last three to five metres, "it just got dark brownish, sort of a yellowish colour", which told them they had potentially found very different conditions, said Kutuzov.

- Up to 30,000 years old? -

Then "we pulled up the last core of ice, which was spectacular", Miles recalled. "Really yellow ice, because it has so much sediment inside of it. Which is a really good sign for us."

Very ancient ice samples have already been collected in the region, including some from the Grigoriev ice cap in Kyrgyzstan dated at 17,000 years.

Another from Guliya on the Tibetan Plateau was estimated to be even older, but its age is disputed.

"Our ice is much colder and probably older than Grigoriev, which gives us hope," said Miles, back in the Tajik capital Dushanbe in October.

"Only laboratory analysis will confirm this, but we hope the core will be exceptional not only for the area but for the entire region -- probably 20,000, 25,000 or 30,000 years old."

- Antarctic ice cave -

Because it traps ancient air bubbles, ice is the only climatic archive of the atmosphere of the past and thus of greenhouse gas concentrations before the industrial burning of coal, oil and gas. Thanks to kilometres of ice core samples taken from the Greenland and Antarctic icecaps, we know that the climate has never been as warm as it is now for 800,000 years.

But between the two poles, there have been very few taken from places inhabited by people, "where we want to really understand how the climate system is varying naturally", said Ice Memory president Thomas Stocker.

The Pamir -- "a very special place... the roof of the world" -- particularly fascinates scientists, Stocker said, because it is a climatic crossroads, redirecting moist air from Europe towards the Indian subcontinent.

What the ancient ice of Kon Chukurbashi has to tell us about the snow, wind and dust of yesteryear may help researchers understand how today's monsoons -- on which hundreds of millions of people in South Asia depend -- might change due to climate disruption.

Which is why Ice Memory is funding the storing of the second sample core in an ice cave at minus 50C in the Concordia Research Station in Antarctica along with others from the Alps, the Andes, Greenland and elsewhere. It's part of a "race against time" before these climatic records melt away.

This means that scientists in the future will be able to study it using more sophisticated methods than we have today.

The first core will soon be subjected to molecular analysis at Hokkaido University in northern Japan. The snowflakes that fell all those centuries ago on the Pamir will finally melt and reveal their secrets.

H.Nakamura--JT